Effect of ultrasonic treatment on structural transformations and mechanical behaviour of amorphous alloys (REVIEW)


Cite item

Abstract

The wide application of amorphous alloys is complicated by a narrow range of their thermal stability, embrittlement at elevated temperatures, difficult machinability, and low tensile plasticity. Ultrasonic treatment is an innovative method for solving these problems. Integration of ultrasonic technology into the technological chain can contribute to the improvement of the operational property of amorphous alloys, the manufacture of parts from them at different scale levels, and high-quality joining with other materials. The effect of ultrasonic vibrations on structural transformations and mechanical behaviour of amorphous alloys is not completely understood. The lack of an integrated scientific basis for the physical processes and accompanying effects in amorphous alloys under ultrasonic excitation prevents the development of the corresponding technology and optimization of its modes. Over the past decade, researchers have proposed various methods of ultrasonic treatment of amorphous alloys to improve their formability, achieve a balance of plasticity and strength, and consolidate with each other and with metals. In addition, certain ideas have been developed about their structure rejuvenation and the possibilities of transformation them to a partially nanocrystalline state under the action of ultrasound. To summarise these developments, the systematic discussion on features, parameters, and modes of ultrasonic treatment applied to ribbon and bulk amorphous alloys to improve their structure-sensitive properties are provided in this review. On this basis, the limitations of current study are discussed. The most promising applications of ultrasonic technologies for rapidly melt-quenched alloys in the near future include: their additive manufacturing, creation of hybrid composites by ultrasonic welding, ultrasonic forming for manufacturing products of complex shapes and geometries, complex multi-stage processing to obtain a unique combination of properties (e.g., melt quenching → laser irradiation → ultrasonic stimulation). This review enhances the existing knowledge on ultrasonic control of the properties and structure of amorphous alloys and facilitates a fast references on this topic for researchers.

About the authors

Inga E. Permyakova

Baikov Institute of Metallurgy and Materials Science of RAS

Author for correspondence.
Email: inga_perm@mail.ru
ORCID iD: 0000-0002-1163-3888

Doctor of Science (Physics and Mathematics), Professor, senior researcher of the Laboratory of Physicochemistry and Mechanics of Metallic Materials

Россия, 119334, Russia, Moscow, Leninsky Prospekt, 49

Elena V. Dyuzheva-Maltseva

Baikov Institute of Metallurgy and Materials Science of RAS

Email: elena.dujewa@yandex.ru
ORCID iD: 0000-0002-7199-487X

postgraduate student

Россия, 119334, Russia, Moscow, Leninsky Prospekt, 49

References

  1. Glezer A.M., Permyakova I.E. Melt-quenched nanocrystals. Boca Raton, CRC Press, Taylor & Francis Group Publ., 2013. 369 p. doi: 10.1201/b15028.
  2. Greer A.L., Costa M.B., Houghton O.S. Metallic glasses. MRS Bulletin, 2023, vol. 48, pp. 1054–1061. doi: 10.1557/s43577-023-00586-5.
  3. Gao K., Zhu X.G., Chen L. et al. Recent development in the application of bulk metallic glasses. Journal of Materials Science and Technology, 2022, vol. 131, pp. 115–121. doi: 10.1016/j.jmst.2022.05.028.
  4. Khan M.M., Nemati A., Rahman Z.U., Shah U.H., Asgar H., Haider W. Recent advancements in bulk metallic glasses and their applications: a review. Critical Reviews in Solid State and Material Sciences, 2018, vol. 43, no. 3, pp. 233–268. doi: 10.1080/10408436.2017.1358149.
  5. Inoue A., Hashimoto K., eds. Amorphous and nanocrystalline materials: preparation, properties, and applications. Berlin, Springer Publ., 2001. 206 p. doi: 10.1007/978-3-662-04426-1.
  6. Trexler M.M., Thadhani N.N. Mechanical properties of bulk metallic glasses. Progress in Materials Science, 2010, vol. 55, no. 8, pp. 759–839. doi: 10.1016/j.pmatsci.2010.04.002.
  7. Glezer A.M., Permyakova I.E., Gromov V.E., Kovalenko V.V. Mekhanicheskoe povedenie amorfnykh splavov [Mechanical behavior of amorphous alloys]. Novokuznetsk, SibGIU Publ., 2006. 416 p.
  8. Dong Quan, Tan Jun, Li Caiju, Sarac B., Eckert J. Room-temperature plasticity of metallic glass composites: a review. Composites Part B: Engineering, 2024, vol. 280, article number 111453. doi: 10.1016/j.compositesb.2024.111453.
  9. Zhang M., Chen Y., Li W. On the origin of softening in the plastic deformation of metallic glasses. International Journal of Plasticity, 2019, vol. 116, pp. 24–38. doi: 10.1016/j.ijplas.2018.12.004.
  10. Hufnagel T.C., Schuh C.A., Falk M.L. Deformation of metallic glasses: recent developments in theory, simulations, and experiments. Acta Materialia, 2016, vol. 109, pp. 375–393. doi: 10.1016/j.actamat.2016.01.049.
  11. Permyakova I., Glezer A. Mechanical behavior of Fe- and Co-based amorphous alloys after thermal action. Metals, 2022, vol. 12, no. 2, article number 297. doi: 10.3390/met12020297.
  12. Maaß R., Löffler J.F. Shear-band dynamics in metallic glasses. Advanced Functional Materials, 2015, vol. 25, no. 16, pp. 2353–2368. doi: 10.1002/adfm.201404223.
  13. Shelyakov A., Sitnikov N., Zaletova I., Borodako K., Tabachkova N. Study of structure and phase transformations in rejuvenated rapidly quenched TiNiCu alloys. Metals, 2023, vol. 13, no. 7, article number 1175. doi: 10.3390/met13071175.
  14. Priezjev N.V. The effect of thermal history on the atomic structure and mechanical properties of amorphous alloys. Computational Materials Science, 2020, vol. 174, article number 109477. doi: 10.1016/j.commatsci.2019.109477.
  15. Di Siyi, Zhou Jing, Cai Mingjuan, Cui Jingxian, Li Xuesong, Shen Baolong, Ke Haibo, Wang Qianqian. Improved ductility of annealed Fe-based metallic glass with good soft magnetic property by cryogenic thermal cycling. Journal of Alloys and Compounds, 2023, vol. 960, article number 170686. doi: 10.1016/j.jallcom.2023.170686.
  16. Sohrabi S., Sun B.Y., Mahmoodan M., Sun Y.H., Gholamipour R., Wang W.H. Rejuvenation by compressive elasto-static loading: the role of static stress on a Zr-based metallic glass. Journal of Alloys and Compounds, 2023, vol. 933, article number 167715. doi: 10.1016/j.jallcom.2022.167715.
  17. Zhang Sailong, Shi Bo, Wang Jinhui, Xu Yuanli, Jin Peipeng. Rejuvenation of a naturally aged bulk metallic glass by elastostatic loading. Materials Science and Engineering: A, 2021, vol. 806, article number 140843. doi: 10.1016/j.msea.2021.140843.
  18. Khademorezaian S., Tomut M., Peterlechner M., da Silva Pinto M.W., Rösner H., Divinski S., Wilde G. Extreme rejuvenation of a bulk metallic glass at the nanoscale by swift heavy ion irradiation. Journal of Alloys and Compounds, 2024, vol. 980, article number 173571. doi: 10.1016/j.jallcom.2024.173571.
  19. Boukhemkhem W., Izerrouken M., Ghidelli M., Pardoen T., Sari A., Khereddine A.Y., Meftah A. Swift heavy ion irradiation effect on structural, morphological and mechanical properties of Zr70Ni30 metallic glass. Physica Scripta, 2023, vol. 98, no. 8, article number 085311. doi: 10.1088/1402-4896/ace387.
  20. Zhang C.Y., Zhu Z.W., Li S.T., Wang Y.Y., Li Z.K., Li H., Yuan G., Zhang H.F. Shear band evolution and mechanical behavior of cold-rolled Zr-based amorphous alloy sheets: an in-situ study. Journal of Materials Science and Technology, 2024, vol. 181, pp. 115–127. doi: 10.1016/j.jmst.2023.09.022.
  21. Stolpe M., Kruzic J.J., Busch R. Evolution of shear bands, free volume and hardness during cold rolling of a Zr-based bulk metallic glass. Acta Materialia, 2014, vol. 64, pp. 231–240. doi: 10.1016/j.actamat.2013.10.035.
  22. Permyakova I., Glezer A. Amorphous-nanocrystalline composites prepared by high-pressure torsion. Metals, 2020, vol. 10, no. 4, article number 511. doi: 10.3390/met10040511.
  23. Bazlov A.I., Parkhomenko M.S., Ubyivovk E.V., Zanaeva E.N., Bazlova T.A., Gunderov D.V. Severe plastic deformation influence on the structure transformation of the amorphous Zr62.5Сu22.5Al10Fe5 alloy. Intermetallics, 2023, vol. 152, article number 107777. doi: 10.1016/j.intermet.2022.107777.
  24. Yang Zhichao, Zhu Lida, Zhang Guixiang, Ni Chenbing, Lin Bin. Review of ultrasonic vibration-assisted machining in advanced materials. International Journal of Machine Tools and Manufacture, 2020, vol. 156, article number 103594. doi: 10.1016/j.ijmachtools.2020.103594.
  25. Behal J., Maru M.S., Katwal R., Pathak D., Kumar V. Ultrasonic assisted green synthesis approach for nanotechnological materials. Journal of Alloys and Compounds Communications, 2024, vol. 3, article number 100013. doi: 10.1016/j.jacomc.2024.100013.
  26. Yang Jingwei, Xie Chuhao, Zhang Jie, Qiao Jian. Design strategies for enhancing strength and toughness in ultrasonic welding of dissimilar metals: a review. Materials Today Communications, 2025, vol. 42, article number 111502. doi: 10.1016/j.mtcomm.2025.111502.
  27. Gallego-Juárez J.A., Graff K.F., eds. Power ultrasonics: Applications of high-intensity ultrasound. Oxford, Woodhead Publ., 2023. 946 p. doi: 10.1016/C2019-0-00783-2.
  28. Smirnov O.M., Glezer A.M. Effect of ultrasonic treatment on embrittlement of amorphous alloys during heat treatment. Fizika i khimiya obrabotki materialov, 1992, no. 3, pp. 131–134.
  29. Smirnov O.M., Glezer A.M., Ovcharov V.P., Khudyakova E.V. Sposob polucheniya amorfnykh splavov [Method for the producing amorphous alloys], opisanie izobreteniya k avtorskomu svidetelstvu no. SU 1787665 A1, 1993, 3 p. EDN: PGXVAV.
  30. Ichitsubo T., Kai S., Ogi H., Hirao M., Tanaka K. Elastic and anelastic behavior of Zr55Al10Ni5Cu30 bulk metallic glass around the glass transition temperature under ultrasonic excitation. Scripta Materialia, 2003, vol. 49, no. 4, pp. 267–271. doi: 10.1016/S1359-6462(03)00294-X.
  31. Ichitsubo T., Matsubara E., Yamamoto T., Chen H.S., Nishiyama N., Saida J., Anazawa K. Microstructure of fragile metallic glasses inferred from ultrasoundaccelerated crystallization in Pd-based metallic glasses. Physical Review Letters, 2005, vol. 95, article number 245501. doi: 10.1103/PhysRevLett.95.245501.
  32. Maeda M., Takahashi Y., Fukuhara M., Xinmin Wang, Inoue A. Ultrasonic bonding of Zr55Cu30Ni5Al10 metallic glass. Materials Science and Engineering: B, 2008, vol. 148, no. 1-3, pp. 141–144. doi: 10.1016/j.mseb.2007.09.028.
  33. Ma Chi, Qin Haifeng, Ren Zhencheng, O'Keeffe S.C., Stevick J., Doll G.L., Dong Yalin, Winiarski B., Ye Chang. Increasing fracture strength in bulk metallic glasses using ultrasonic nanocrystal surface modification. Journal of Alloys and Compounds, 2017, vol. 718, pp. 246–253. doi: 10.1016/j.jallcom.2017.05.056.
  34. Nepomnyashchaya V.V., Rubanik V.V. The influence of ultrasonic mechanical activation on crystallization kinetics and martensitic transformations of TiNi-based amorphous alloys. Vektor nauki Tolyattinskogo gosudarstvennogo universiteta, 2017, no. 3, pp. 90–96. doi: 10.18323/2073-5073-2017-3-90-96.
  35. Becker M., Kuball A., Ghavimi A., Adam B., Busch R., Gallino I., Balle F. Solid state joining of a cold rolled Zr-based bulk metallic glass to a wrought aluminum alloy by power ultrasonics. Materials, 2022, vol. 15, no. 21, article number 7673. doi: 10.3390/ma15217673.
  36. Bakai S.A., Volchok O.I., Stoev P.I., Kamyshanchenko N.V., Kungurtsev E.S. Effect of the ultrasound action on the acoustic emission and mechanical properties of zirconium-based bulk metallic glasses. Acoustical Physics, 2012, vol. 58, no. 3, pp. 277–280. doi: 10.1134/S1063771012020029.
  37. Bakai S.A., Bulatov A.S., Klochko V.S., Korniets A.V., Fateev M.P. On the low-temperature absorption of longitudinal ultrasound in Zr52.5Ti5Cu17.9Ni14.6Al10 bulk metallic glass. Low Temperature Physics, 2012, vol. 38, no. 10, pp. 948–951. doi: 10.1063/1.4758778.
  38. Tsaregradskaya T.L., Kozachenko V.V., Kuryliuk A.M., Turkov O.V., Saenko G.V. Effect of ultrasonic treatment on phase formation processes in amorphous alloy Fe76Ni4Si14B6. Journal of Nano- and Electronic Physics, 2019, vol. 11, no. 3, article number 03031. doi: 10.21272/jnep.11(3).03031.
  39. Vasilev M.A., Tinkov V.A., Petrov Yu.N., Voloshko S.M., Galstyan G.G., Cherepin V.T., Khodakovskiy A.S. Nanocrystallization of amorphous alloy Fe73.6Si15.8B7.2Cu1.0Nb2.4 (Finemet) under ultrasonic impact treatment. Metallofizika i noveyshie tekhnologii, 2013, vol. 35, no. 5, pp. 667–675.
  40. Blaha F., Langenecker B. Dehnung von zink-kristallen unter ultraschalleinwirkung. Naturwissenschaften, 1955, vol. 42, no. 20, pp. 556–557. doi: 10.1007/BF00623773.
  41. Langenecker B. Effects of ultrasound on deformation characteristics of metals. IEEE Transactions on Sonics and Ultrasonics, 1966, vol. 13, no. 1, pp. 1–8. doi: 10.1109/T-SU.1966.29367.
  42. Li Ning, Xu Xiaona, Zheng Zhizhen, Liu Lin. Enhanced formability of a Zr-based bulk metallic glass in a supercooled liquid state by vibrational loading. Acta Materialia, 2014, vol. 65, pp. 400–411. doi: 10.1016/j.actamat.2013.11.009.
  43. Han Guangchao, Peng Zhuo, Xu Linhong, Li Ning. Ultrasonic vibration facilitates the micro-formability of a Zr-based metallic glass. Materials, 2018, vol. 11, no. 12, article number 2568. doi: 10.3390/ma11122568.
  44. Lou Yan, Liu Xiao, Yang Xiaole, Ge Yang, Zhao Dandan, Wang Hao, Zhang Lai-Chang, Liu Zhiyuan. Fast rejuvenation in bulk metallic glass induced by ultrasonic vibration precompression. Intermetallics, 2020, vol. 118, no. 5, article number 106687. doi: 10.1016/j.intermet.2019.106687.
  45. Chen Zhe, Ren Shuai, Zhao Rui et al. Plasticity and rejuvenation of aged metallic glasses by ultrasonic vibrations. Journal of Materials Science and Technology, 2024, vol. 181, pp. 231–239. doi: 10.1016/j.jmst.2023.09.029.
  46. Li Ning, Chen Wen, Liu Lin. Thermoplastic micro-forming of bulk metallic glasses: a review. JOM, 2016, vol. 68, no. 4, pp. 1246–1261. doi: 10.1007/s11837-016-1844-y.
  47. Zhao R., Jiang H.Y., Luo P., Shen L.Q., Wen P., Sun Y.H., Bai H.Y., Wang W.H. Reversible and irreversible β-relaxations in metallic glasses. Physical Review B, 2020, vol. 101, no. 9, article number 094203. doi: 10.1103/PhysRevB.101.094203.
  48. Li X., Wei D., Zhang J.Y. et al. Ultrasonic plasticity of metallic glass near room temperature. Applied Materials Today, 2020, vol. 21, no. 3, article number 100866. doi: 10.1016/j.apmt.2020.100866.
  49. Yuan Chenchen, Liu Rui, Lv Zhuwei, Li Xin, Pang Changmeng, Yang Can, Ma Jiang, Wang Weihua. Softening in an ultrasonic-vibrated Pd-based metallic glass. Intermetallics, 2022, vol. 144, article number 107527. doi: 10.1016/j.intermet.2022.107527.
  50. Yuan C.C., Lv Z.W., Li X. et al. Ultrasonic-promoted defect activation and structural rejuvenation in a La-based metallic glass. Intermetallics, 2023, vol. 153, article number 107803. doi: 10.1016/j.intermet.2022.107803.
  51. Li Hongzhen, Yan Yuqiang, Sun Fei, Li Kangsen, Luo Feng, Ma Jiang. Shear punching of amorphous alloys under high-frequency vibrations. Metals, 2019, vol. 9, no. 11, article number 1158. doi: 10.3390/met9111158.
  52. Ma Jiang, Liang Xiong, Wu Xiaoyu, Liu Zhiyuan, Gong Feng. Sub-second thermoplastic forming of bulk metallic glasses by ultrasonic beating. Scientific Reports, 2015, vol. 5, article number 17844. doi: 10.1038/srep17844.
  53. Luo Feng, Sun Fei, Li Kangsen, Gong Feng, Liang Xiong, Wu Xiaoyu, Ma Jiang. Ultrasonic assisted micro-shear punching of amorphous alloy. Materials Research Letters, 2018, vol. 6, no. 10, pp. 545–551. doi: 10.1080/21663831.2018.1500399.
  54. Li Xin, Li Luyao, Sohrabi S. et al. Ultrasonic vibration enabled under-liquid forming of metallic glasses. Science Bulletin, 2024, vol. 69, no. 2, pp. 163–166. doi: 10.1016/j.scib.2023.11.049.
  55. González S., Sort J., Louzguine-Luzgin D.V., Perepezko J.H., Baró M.D., Inoue A. Tuning the microstructure and mechanical properties of Al-based amorphous/crystalline composites by addition of Pd. Intermetallics, 2010, vol. 18, no. 12, pp. 2377–2384. doi: 10.1016/j.intermet.2010.08.036.
  56. Song Wenli, Wu Yuan, Wang Hui, Liu Xiongjun, Chen Houwen, Guo Zhenxi, Lu Zhaoping. Microstructural control via copious nucleation manipulated by in situ formed nucleants: large-sized and ductile metallic glass composites. Advanced Materials, 2016, vol. 28, no. 37, pp. 8156–8161. doi: 10.1002/adma.201601954.
  57. Khademian N., Gholamipour R., Shahri F., Tamizifar M. Effect of vanadium substitution for zirconium on the glass forming ability and mechanical properties of a Zr65Cu17.5Ni10Al7.5 bulk metallic glass. Journal of Alloys and Compounds, 2013, vol. 546, pp. 41–47. doi: 10.1016/j.jallcom.2012.08.035.
  58. Jang J.S.C., Wu K.C., Jian S.R., Hsieh P.J., Huang J.C., Liu C.T. A Ni-free Zr-based bulk metallic glass with remarkable plasticity. Journal of Alloys and Compounds, 2011, vol. 509, pp. S109–S114. doi: 10.1016/j.jallcom.2011.01.209.
  59. Wu Y., Wang H., Liu X.J., Chen X.H., Hui X.D., Zhang Y., Lu Z.P. Designing bulk metallic glass composites with enhanced formability and plasticity. Journal of Materials Science and Technology, 2014, vol. 30, no. 6, pp. 566–575. doi: 10.1016/j.jmst.2014.03.028.
  60. Zhao Yan Chun, Ma Wen Long, Yuan Xiao Peng, Zhao Zhi Ping, Huang Ming Yuan, Kou Sheng Zhong, Li Chun Yan. Influence of annealing treatment on microstructure and mechanical properties of Fe-Cu-Si-Al amorphous composites. Materials Science Forum, 2016, vol. 849, pp. 71–75. doi: 10.4028/ href='www.scientific.net/MSF.849.71' target='_blank'>www.scientific.net/MSF.849.71.
  61. Lee J.I., Kim S.Y., Park E.S. In-situ synthesis and mechanical properties of Zr-based bulk metallic glass matrix composites manipulated by nitrogen additions. Intermetallics, 2017, vol. 91, pp. 70–77. doi: 10.1016/j.intermet.2017.08.005.
  62. Wang Tuo, Wu Yidong, Si Jiajia, Liu Yanhui, Hui Xidong. Plasticizing and work hardening in phase separated Cu-Zr-Al-Nb bulk metallic glasses by deformation induced nanocrystallization. Materials and Design, 2018, vol. 142, pp. 74–82. doi: 10.1016/j.matdes.2018.01.003.
  63. Wang D.P., Yang Y., Niu X.R., Lu J., Yang G.N., Wang W.H., Liu C.T. Resonance ultrasonic actuation and local structural rejuvenation in metallic glasses. Physical Review B, 2017, vol. 95, article number 235407. doi: 10.1103/PhysRevB.95.235407.
  64. Yu Jiangtao, Lou Yan, Wang Zhaoyi, Yang Lingyun, Huang Guijian, Ma Jiang. Revealing the mechanical responses and accommodation mechanisms of Cu-based amorphous composites under elastic preload and ultrasonic vibration treatment. Journal of Non-Crystalline Solids, 2024, vol. 629, article number 122875. doi: 10.1016/j.jnoncrysol.2024.122875.
  65. Lou Yan, Yang Lingyun, Xv Shenpeng, Ma Jiang. Fast increase in ductility and strength of Zr-based bulk amorphous alloys induced by intermittent high-frequency vibration loading. Intermetallics, 2022, vol. 142, article number 107467. doi: 10.1016/j.intermet.2022.107467.
  66. Zhai W., Nie L.H., Hui X.D., Xiao Y., Wang T., Wei B. Ultrasonic excitation induced nanocrystallization and toughening of Zr46.75Cu46.75Al6.5 bulk metallic glass. Journal of Materials Science and Technology, 2020, vol. 45, pp. 157–161. doi: 10.1016/j.jmst.2019.10.035.
  67. Zhang Yu, Sohrabi Sajad, Li Xin, Ren Shuai, Ma Jiang. Tailored gradient nanocrystallization in bulk metallic glass via ultrasonic vibrations. Journal of Materials Science and Technology, 2025, vol. 210, pp. 109–120. doi: 10.1016/j.jmst.2024.05.027.
  68. Zhang Y., Zhao H., Yan Y.Q., Tong X., Ma Jiang, Ke Haibo, Wang Weihua. Ultrasonic-assisted fabrication of metallic glass composites. Journal of Non-Crystalline Solids, 2022, vol. 597, article number 121894. doi: 10.2139/ssrn.4039426.
  69. Chirkova V.V., Abrosimova G.E., Pershina E.A., Volkov N.A., Aronin A.S. Influence of a Ta Coating on the Crystallization of Deformed Amorphous Alloys Fe78Si13B9 and Al87Ni8Gd5. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2023, vol. 17, pp. 1192–1198. doi: 10.1134/S1027451023060083.
  70. Abrosimova G., Chirkova V., Matveev D., Pershina E., Volkov N., Aronin A. Influence of a protective coating on the crystallization of an amorphous Fe78Si13B9 alloy. Metals, 2023, vol. 13, no. 6, article number 1090. doi: 10.3390/met13061090.
  71. Kawamura Y., Ohno Y. Spark welding of Zr55Al10Ni5Cu30 bulk metallic glass. Scripta Materialia, 2001, vol. 45, no. 2, pp. 127–132. doi: 10.1016/S1359-6462(01)01003-X.
  72. Kim J., Kawamura Y. Electron beam welding of Zr-based BMG/Ni joints: effect of beam irradiation position on mechanical and microstructural properties. Journal of Materials Processing Technology, 2008, vol. 207, no. 1-3, pp. 112–117. doi: 10.1016/j.jmatprotec.2007.12.090.
  73. Shoji T., Kawamura Y., Ohno Y. Friction welding of bulk metallic glasses to different ones. Materials Science and Engineering: A, 2004, vol. 375–377, pp. 394–398. doi: 10.1016/j.msea.2003.10.183.
  74. Xu Z., Ma L., Yang J., Zhang J., Yan J. Ultrasonic-induced rising and wetting of a Sn-Zn filler in an aluminum joint. Welding Journal, 2016, vol. 95, pp. 264–272.
  75. Xu Zhiwu, Ma Lin, Yan Jiuchun, Yang Shiqin, Du Shanyi. Wetting and oxidation during ultrasonic soldering of an alumina reinforced aluminum–copper–magnesium (2024 Al) matrix composite. Composites Part A: Applied Science and Manufacturing, 2012, vol. 43, no. 3, pp. 407–414. doi: 10.1016/j.compositesa.2011.12.006.
  76. Lai Zhiwei, Xie Ruishan, Pan Chuan, Chen Xiaoguang, Liu Lei, Wang Wenxian, Zou Guisheng. Ultrasound-assisted transient liquid phase bonding of magnesium alloy using brass interlayer in air. Journal of Materials Science and Technology, 2017, vol. 33, no. 6, pp. 567–572. doi: 10.1016/j.jmst.2016.11.002.
  77. Ji Hongjun, Li Long, Wang Lijie, Li Mingyu. Microstructures and properties of the Fe-based amorphous foil/aluminum dissimilar joint by ultrasonic-assisted soldering. Welding in the World, 2015, vol. 59, pp. 623–628. doi: 10.1007/s40194-015-0237-0.
  78. Tamura S., Tsunekawa Y., Okumiya M., Hatakeyama M. Ultrasonic cavitation treatment for soldering on Zr-based bulk metallic glass. Journal of Materials Processing Technology, 2008, vol. 206, no. 1-3, pp. 322–327. doi: 10.1016/j.jmatprotec.2007.12.032.
  79. Xu Zhiwu, Li Zhengwei, Zhong Shijiang, Ma Zhipeng, Yan Jiuchun. Wetting mechanism of Sn to Zr50.7Cu28Ni9Al12.3 bulk metallic glass assisted by ultrasonic treatment. Ultrasonics Sonochemistry, 2018, vol. 48, no. 1, pp. 207–217. doi: 10.1016/j.ultsonch.2018.05.036.
  80. Wang Jiahao, Liu Senji, Huang Pengyu, Liu Junsheng, Zhang Yu, Liang Xiong, Sohrabi Sajad, Ma Jiang. Ultrasonic powder consolidation of metallic glass/Al-6061 composites. Intermetallics, 2024, vol. 174, article number 108462. doi: 10.1016/j.intermet.2024.108462.
  81. Liang Xiong, Zhu XiaoLong, Li Xin, Mo RuoDong, Liu YongJing, Wu Kai, Ma Jiang. High-entropy alloy and amorphous alloy composites fabricated by ultrasonic vibrations. Science China: Physics, Mechanics and Astronomy, 2020, vol. 63, no. 11, article number 116111. doi: 10.1007/s11433-020-1560-4.
  82. Liang Xiong, Wu Kai, Fu Jianan et al. Fabrication of amorphous and high-entropy biphasic composites using high-frequency ultrasonic vibration. Journal of Non-Crystalline Solids, 2022, vol. 582, article number 121458. doi: 10.1016/j.jnoncrysol.2022.121458.
  83. Kim J. Weld ability of Cu54Zr22Ti18Ni6 bulk metallic glass by ultrasonic welding processing. Materials Letters, 2014, vol. 130, pp. 160–163. doi: 10.1016/j.matlet.2014.05.056.
  84. Zhang Xingyi, Xiao Yong, Wang Ling, Wan Chao, Wang Qiwei, Sheng Hongchao, Li Mingyu. Ultrasound-induced liquid/solid interfacial reaction between Zn-3Al alloy and Zr-based bulk metallic glasses. Ultrasonics Sonochemistry, 2018, vol. 45, pp. 86–94. doi: 10.1016/j.ultsonch.2018.03.006.
  85. Song Xiao Cun, Zhu Zheng Qiang, Chen Yan Fei. Ultrasonic welding of Fe78Si9B13 metallic glass. Materials Science Forum, 2014, vol. 809, pp. 348–353. doi: 10.4028/ href='www.scientific.net/MSF.809-810.348' target='_blank'>www.scientific.net/MSF.809-810.348.
  86. Wu Wenzheng, Jiang Jili, Li Guiwei, Fuh Jerry Ying His, Jiang Hao, Gou Pengwei, Zhang Longjian, Liu Wei, Zhao Ji. Ultrasonic additive manufacturing of bulk Ni-based metallic glass. Journal of Non-Crystalline Solids, 2019, vol. 506, pp. 1–5. doi: 10.1016/j.jnoncrysol.2018.12.008.
  87. Li Guiwei, Zhao Ji, Fuh Jerry Ying His, Wu Wenzheng, Jiang Jili, Wang Tianqi, Chang Shuai. Experiments on the ultrasonic bonding manufacturing of metallic glass and crystalline metal composite. Materials, 2019, vol. 12, no. 18, article number 2975. doi: 10.3390/ma12182975.
  88. Li Z., Huang Z., Sun F., Li X., Ma J. Forming of metallic glasses: mechanisms and processes. Materials Today Advances, 2020, vol. 7, article number 100077. doi: 10.1016/j.mtadv.2020.100077.
  89. Li Luyao, Li Xin, Huang Zhiyuan et al. Joining of metallic glasses in liquid via ultrasonic vibrations. Nature Communications, 2023, vol. 14, no. 1, article number 6305. doi: 10.1038/s41467-023-42014-x.
  90. Telford M. The case for bulk metallic glass. Materials Today, 2004, vol. 7, no. 3, pp. 36–43. doi: 10.1016/S1369-7021(04)00124-5.
  91. Li W., Wang C., Li L.Y. et al. Manipulating defects in metallic glasses via ultrasonic treatment. International Journal of Mechanical Sciences, 2025, vol. 287, article number 109960. doi: 10.1016/j.ijmecsci.2025.109960.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Permyakova I.E., Dyuzheva-Maltseva E.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies