The influence of method and temperature of ion-plasma treatment on physical and mechanical properties of surface layers in austenitic stainless steel

Cover Page

Cite item

Full Text

Abstract

Ion-plasma saturation with interstitial atoms (nitrogen or carbon) is a promising method for enhancing the surface strength and wear resistance of austenitic stainless steel parts and products. The paper considers the influence of method and temperature of ion-plasma treatment (IPT) on phase composition, thickness, and strength properties (microhardness) of the surface layers in 01H17N13M3 austenitic stainless steel specimens. Steel specimens with a coarse-grained structure were nitrided in the arc and glow discharge plasma at different temperatures (400 °C, 550 °C, and 700 °C). Regardless of temperature and IPT-method, ion-plasma nitriding leads to the formation of hardened surface layers in steel specimens. In this case, the thickness and phase composition of IPT-hardened layers depend on both the method and temperature of nitriding. Nitrogen saturation of specimen surfaces in the glow discharge at a temperature of 400 °C promotes the formation of a thin S-phase layer (nitrogen-expanded austenite, 4 μm in thickness). At the same IPT temperature in the arc discharge plasma, the authors observed the formation of a heterophase (Fe-γN, Fe4N, CrN, and Fe-α) surface layer with a significantly greater thickness (40–45 μm). Regardless of the IPT-method, a saturation of specimens at temperatures of 550 °C and 700 °C is accompanied by the formation of thick heterophase hardened layers (40–60 μm). In this case, the IPT method has a negligible effect on the phase composition of layers but significantly affects the ratio of the volume content of the hardened phases. After being IPT-processed in different modes, the microhardness distribution profile for all specimens has three typical zones: a composite layer (or S-phase at the IPT in a glow discharge at Ta=400 °C), a diffusion zone, and a matrix. With an increase in the saturation temperature, the thickness of the transition diffusion zone increases regardless of the IPT method.

About the authors

Elena A. Zagibalova

Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences, Tomsk (Russia); National Research Tomsk Polytechnic University, Tomsk (Russia)

Author for correspondence.
Email: zagibalova-lena99@mail.ru
ORCID iD: 0000-0002-2079-7198

engineer, student

Russian Federation

Valentina A. Moskvina

Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences, Tomsk (Russia)

Email: fake@neicon.ru
ORCID iD: 0000-0002-6128-484X

junior researcher, postgraduate student

Russian Federation

Galina G. Mayer

Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences, Tomsk (Russia)

Email: fake@neicon.ru
ORCID iD: 0000-0003-3043-9754

PhD (Physics and Mathematics), researcher

Russian Federation

References

  1. Lo K.H., Shek C.H., Lai J.K.L. Recent developments in stainless steels. Materials Science and Engineering: R: Reports, 2009, vol. 65, no. 4-6, pp. 39–104. doi: 10.1016/j.mser.2009.03.001.
  2. Astafurova E.G., Melnikov E.V., Astafurov S.V., Ratochka I.V., Mishin I.P., Mayer G.G., Moskvina V.A., Zakharov G.N., Smirnov A.I., Bataev V.A. Hydrogen embrittlement effects on austenitic stainless steels with ultrafine-grained structure of different morphology. Fizicheskaya mezomekhanika, 2018, vol. 21, no. 2, pp. 103–117. doi: 10.24411/1683-805X-2018-12011.
  3. Astafurov S.V., Maier G.G., Melnikov E.V., Moskvina V.A., Panchenko M.Yu., Astafurova E.G. The strain-rate dependence of the Hall-Petch effect in two austenitic stainless steels with different stacking fault energies. Materials Science and Engineering A, 2019, vol. 756, pp. 365–372. doi: 10.1016/j.msea.2019.04.076.
  4. Gardner L. Stability and design of stainless steel structures – Review and outlook. Thin-Walled Structures, 2019, vol. 141, pp. 208–216. doi: 10.1016/j.tws.2019.04.019.
  5. Borgioli F. From austenitic stainless steel to expanded austenite-S phase: formation, characteristics and properties of an elusive metastable phase. Metals, 2020, vol. 10, no. 2, article number 187. doi: 10.3390/met10020187.
  6. Che H.L., Tong S., Wang K.S., Lei M.K., Somers M.A.J. Co-existence of γ’N phase and γN phases on nitrided austenitic Fe-Cr-Ni alloys-I. Experiment. Acta Materialia, 2019, vol. 177, pp. 35–45. doi: 10.1016/j.actamat.2019.07.019.
  7. Li Y., Wang Z., Wang L. Surface properties of nitrided layer on AISI 316L austenitic stainless steel produced by high temperature plasma nitriding in short time. Applied Surface Science, 2014, vol. 298, pp. 243–250. doi: 10.1016/j.apsusc.2014.01.177.
  8. Randall N.X., Renevier N., Michel H., Collignon P. Correlation between processing parameters and mechanical properties as a function of substrate polarisation and depth in a nitrided 316 L stainless steel using nanoindentation and scanning force microscopy. Vacuum, 1997, vol. 48, no. 10, pp. 849–855. doi: 10.1016/S0042-207X(97)00084-5.
  9. Wei R., Vajo J.J., Matossian J.N., Wilbur P.J., Davis J.A., Williamson D.L., Collins G.A. A comparative study of beam ion implantation, plasma ion implantation and nitriding of AISI 304 stainless steel. Surface and Coatings Technology, 1996, vol. 83, no. 1-3, pp. 235–242. doi: 10.1016/0257-8972(95)02825-0.
  10. Khusainov Yu.G., Ramazanov K.N., Esipov R.S., Isyandavletova G.B. Effect of hydrogen on the process of ion nitriding of austenitic steel 12KH18N10T. Vestnik Ufimskogo gosudarstvennogo aviatsionnogo tekhnicheskogo universiteta, 2017, vol. 21, no. 2, pp. 24–29.
  11. De Sousa R.R.M., De Araújo F.O., Gontijo L.C., Da Costa J.A.P., Nascimento I.O., Alves Jr.C. Cathodic cage plasma nitriding of austenitic stainless steel (AISI 316): influence of the working pressure on the nitrided layers properties. Materials Research, 2014, vol. 17, no. 2, pp. 427–433. doi: 10.1590/S1516-14392013005000197.
  12. Singh V., Marchev K., Cooper C.V., Meletis E.I. Intensified plasma-assisted nitriding of AISI 316L stainless steel. Surface and Coatings Technology, 2002, vol. 160, no. 2-3, pp. 249–258. doi: 10.1016/S0257-8972(02)00403-6.
  13. Borgioli F., Fossati A., Matassini G., Galvanetto E., Bacci T. Low temperature glow-discharge nitriding of a low nickel austenitic stainless steel. Surface and Coatings Technology, 2010, vol. 204, no. 21-22, pp. 3410–3417. doi: 10.1016/j.surfcoat.2010.04.004.
  14. Lakhtin Yu.M., Kogan Ya.D., Shpis G.-I., Bemer Z. Teoriya i tekhnologiya azotirovaniya [Theory and technology of nitriding]. Moscow, Metallurgiya Publ., 1991. 318 p.
  15. Borgioli F., Fossati A., Galvanetto E., Bacci T. Glow-discharge nitriding of AISI 316L austenitic stainless steel: influence of treatment temperature. Surface and Coatings Technology, 2005, vol. 200, no. 7, pp. 2474–2480. doi: 10.1016/j.surfcoat.2004.07.110.
  16. Tao X., Liu X., Matthews A., Leyland A. The influence of stacking fault energy on plasticity mechanisms in triode-plasma nitrided austenitic stainless steels: implications for the structure and stability of nitrogen-expanded austenite. Acta Materialia, 2018, vol. 164, pp. 60–75. doi: 10.1016/j.actamat.2018.10.019.
  17. Camps E., Becerril F., Muhl S., Alvarez-Fregoso O., Village M. Microwave plasma characteristics in steel nitriding process. Thin Solid Films, 2000, vol. 373, no. 1-2, pp. 293–298. doi: 10.1016/S0040-6090(00)01110-X.
  18. Figueroa C.A., Wisnivesky D., Alvarez F. Effect of hydrogen and oxygen on stainless steel nitriding. Journal of Applied Physics, 2002, vol. 92, no. 2, pp. 764–770. doi: 10.1063/1.1483893.
  19. De Sousa R.R.M., De Araújo F.O., Gontijo L.C., Da Costa J.A.P., Alves C. Cathodic cage plasma nitriding (CCPN) of austenitic stainless steel (AISI 316): Influence of the different ratios of the (N2/H2) on the nitrided layers properties. Vacuum, 2012, vol. 86, no. 12, pp. 2048–2053. doi: 10.1016/j.vacuum.2012.05.008.
  20. Kumar S., Baldwin M.J., Fewell M.P., Haydon S.C., Short K.T., Collins G.A., Tendys J. The effect of hydrogen on the growth of the nitrided layer in rf-plasma-nitrided austenitic stainless steel AISI 316. Surface and Coatings Technology, 2000, vol. 123, no. 1, pp. 29–35. doi: 10.1016/S0257-8972(99)00393-X.
  21. Dalke A., Burlacov I., Hamann S., Puth A., Böcker J., Spies H.-J., Röpcke J., Biermann H. Solid carbon active screen plasma nitrocarburizing of AISI 316L stainless steel: Influence of N2-H2 gas composition on structure and properties of expanded austenite. Surface and Coatings Technology, 2019, vol. 357, pp. 1060–1068. doi: 10.1016/j.surfcoat.2018.10.095.
  22. Araujo E.D., Bandeira R.M., Manfrinato M.D., Moreto J.A., Borges R., Vales S.D.S., Suzuki P.A., Rossino L.S. Effect of ionic plasma nitriding process on the corrosion and micro-abrasive wear behavior of AISI 316L austenitic and AISI 470 super-ferritic stainless steels. Journal of Materials Research and Technology, 2019, vol. 8, no. 2, pp. 2180–2191. doi: 10.1016/j.jmrt.2019.02.006.
  23. Ohtsu N., Miura K., Hirano M., Kodama K. Investigation of admixed gas effect on plasma nitriding of AISI316L austenitic stainless steel. Vacuum, 2021, vol. 193, article number 110545. doi: 10.1016/j.vacuum.2021.110545.
  24. Khusainov Y.G., Esipov R.S., Ramazanov K.N., Vardanyan E.L., Tarasov P.V., Shekhtman S.R. Influence of hydrogen content in working gas on growth kinetics of hardened layer at ion nitriding of 16MnCr5 and A290C1M steels. IOP Conference Series: Materials Science and Engineering, 2018, vol. 387, no. 1, article number 012034. doi: 10.1088/1757-899X/387/1/012034.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies