Влияние состава сплава на параметры обработки и качество поверхности посредством комплексного анализа

Обложка

Цитировать

Полный текст

Аннотация

Изучалось влияние состава сплавов (мягкой стали и алюминия) на несколько параметров обработки, таких как температура, сила резания, шероховатость поверхности и морфология стружки. Значительные изменения этих параметров были обнаружены путем модификации сплавов при поддержании постоянных условий процесса. В мягкой стали скорость вращения влияла на морфологию стружки, при этом повышенные скорости приводили к образованию непрерывной стружки, а пониженные скорости – к образованию более короткой стружки. Увеличенный передний угол влияет на свойства стружки, что приводит к небольшому уменьшению ее длины. При заданной скорости вращения на длину стружки влияла сила резания. Алюминиевые сплавы, напротив, непрерывно производили непрерывные фрагменты стружки независимо от скорости резания или переднего угла. Были выбраны коэффициенты корреляции переменных, разработана эффективная регрессионная модель и применена к экспериментальным данным. Модель случайного леса показывает, что выбор материала существенно влияет на температуру, силу резания, шероховатость поверхности и морфологию стружки во время обработки. Получены данные о корреляции между передним углом инструмента и другими параметрами обработки, выявлены факторы, влияющие на качество поверхности. Результаты способствуют лучшему пониманию свойств обработанной поверхности, что облегчает оптимизацию операций обработки для различных материалов.

Об авторах

Агари Шайлеш Рао

Технологический институт Нитт Минкши

Автор, ответственный за переписку.
Email: shailesh.rao@nmit.ac.in
ORCID iD: 0000-0001-6190-9857

кандидат наук, профессор, факультет машиностроения

Индия, 560064, Индия, г. Бангалор, Йелаханка, п. я. 6429

Шрилата Рао

Технологический институт Нитт Минкши

Email: srilatha.rao.p@nmit.ac.in
ORCID iD: 0000-0003-3691-8713

кандидат наук, профессор

Индия, 560064, Индия, г. Бангалор, Йелаханка, п. я. 6429

Список литературы

  1. Anand A., Behera A.K., Das S.R. An overview on economic machining of hardened steels by hard turning and its process variables // Manufacturing Review. 2019. Vol. 6. P. 1–9. doi: 10.1051/mfreview/2019002.
  2. Duc Pham Minh, Giang Le Hieu, Dai Mai Duc, Sy Do Tien. An experimental study on the effect of tool geometry on tool wear and surface roughness in hard turning // Advances in Mechanical Engineering. 2020. Vol. 12. № 9. P. 1–11. doi: 10.1177/1687814020959885.
  3. Rao A.S. Effect of nose radius on the chip morphology, cutting force and tool wear during dry turning of Inconel 718 // Tribology – Materials Surfaces & Interfaces. 2023. Vol. 17. № 1. P. 62–71. doi: 10.1080/17515831.2022.2160161.
  4. Bellini C., Di Cocco V., Iacoviello F., Sorrentino L. Numerical model development to predict the process-induced residual stresses in fibre metal laminates // Forces in Mechanics. 2021. Vol. 3. Article number 100017. doi: 10.1016/j.finmec.2021.100017.
  5. Mathivanan A., Swaminathan G., Sivaprakasam P., Suthan R., Jayaseelan V., Nagaraj M. DEFORM 3D Simulations and Taguchi Analysis in Dry Turning of 35CND16 Steel // Advances in Materials Science and Engineering. 2022. Vol. 2022. № 1. P. 1–10. doi: 10.1155/2022/7765343.
  6. Mathivanan A., Sudeshkumar M., Ramadoss R., Ezilarasan C., Raju G., Jayaseelan V. Finite element simulation and regression modeling of machining attributes on turning AISI 304 stainless steel // Manufacturing Review. 2021. Vol. 8. Article number 24. doi: 10.1051/mfreview/2021022.
  7. Li Bin. A review of tool wear estimation using theoretical analysis and numerical simulation technologies // International Journal of Refractory Metals and Hard Materials. 2012. Vol. 35. P. 143–151. doi: 10.1016/j.ijrmhm.2012.05.006.
  8. Outeiro J.K., Umbrello D., M’Saoubi R., Jawahir I.S. Evaluation of Present Numerical models for Predicting Metal Cutting Performance and Residual Stresses // Machining Science and Technology. 2015. Vol. 19. № 2. P. 183–216. doi: 10.1080/10910344.2015.1018537.
  9. Zheng Jin, Zhang Yaoman, Qiao Hanying. Milling Mechanism and Chattering Stability of Nickel-Based Superalloy Inconel 718 // Materials. 2023. Vol. 16. Article number 5748. doi: 10.3390/ma16175748.
  10. Xiang Huimin, Xing Yan, Dai Fu-zhi et al. High-entropy ceramics: Present status, challenges, and a look forward // Journal of Advanced Ceramics. 2021. Vol. 10. № 3. P. 385–441. doi: 10.1007/s40145-021-0477-y.
  11. Zhou Guo, Xu Chao, Wang Xiaohao, Feng Pingfa, Zhang Min. Determination of tool tip steady-state temperature in dry turning process based on artificial neural network // Journal of Manufacturing Processes. 2022. Vol. 79. P. 600–613. doi: 10.1016/j.jmapro.2022.05.021.
  12. Шайлеш Р.А. Качество обработки поверхности и эффективность резания в кунжутном масле во время механической обработки: регрессионный анализ // Frontier Materials & Technologies. 2024. № 2. С. 101–111. doi: 10.18323/2782-4039-2024-2-68-9.
  13. Li Guo, Lu Wanqiu, Huang Shuchun, Zhang Xingyu, Ding Shuiting. Analysis and prediction of residual stresses based on cutting temperature and cutting force in rough turning of Ti–6Al–4V // Heliyon. 2022. Vol. 8. № 11. Article number e11661. doi: 10.1016/j.heliyon.2022.e11661.
  14. Hegab H., Salem A., Rahnamayan S., Kishawy H.A. Analysis, modeling, and multi-objective optimization of machining Inconel 718 with nano-additives based minimum quantity coolant // Applied Soft Computing. 2021. Vol. 108. Article number 107416. doi: 10.1016/j.asoc.2021.107416.
  15. Mhlanga D. Artificial Intelligence and Machine Learning for Energy Consumption and Production in Emerging Markets: A Review // Energies. 2023. Vol. 16. № 2. Article number 745. doi: 10.3390/en16020745.
  16. Cai Wei, Li Yanqi, Li Li, Lai Kee-hung, Jia Shun, Xie Jun, Zhang Yuanhui, Hu Luoke. Energy saving and high efficiency production oriented forward-and-reverse multidirectional turning: Energy modeling and application // Energy. 2022. Vol. 252. Article number 123981. doi: 10.1016/j.energy.2022.123981.
  17. Li Kuan-Ming, Liang Steven Y. Modelling of cutting forces in near dry machining under tool wear effect // International Journal of Machine Tools and Manufacture. 2007. Vol. 47. № 7-8. P. 1292–1301. doi: 10.1016/j.ijmachtools.2006.08.017.
  18. Ko Jeong Hoon. Time-domain prediction of milling stability according to cross edge radius and flank edge profiles // International Journal of Machine Tools and Manufacture. 2015. Vol. 89. P. 74–85. doi: 10.1016/j.ijmachtools.2014.11.004.
  19. Trujillo Vilches F.J., Hurtado L.S., Fernández F.M., Gamboa C.B. Analysis of the Chip Geometry in Dry Machining of Aeronautical Aluminum Alloys // Applied Sciences. 2017. Vol. 7. № 2. Article number 132. doi: 10.3390/app7020132.
  20. Machado A.R., Da Silva L.R.R., De Souza F.C.R., Davis R., Pereira L.C., Sales W.F., De Rossi W., Ezugwu E.O. State of the art of tool texturing in machining // Journal of Materials Processing Technology. 2021. Vol. 293. Article number 117096. doi: 10.1016/j.jmatprotec.2021.117096.
  21. Radhika A., Shailesh Rao A., Yogesh K.B. Evaluating machining performance of AlSI 1014 steel using gingelly oil as cutting fluid // Australian Journal of Mechanical Engineering. 2021. Vol. 19. № 4. P. 445–456. doi: 10.1080/14484846.2019.1636517.
  22. Agari S.R. Wear and surface characteristics on tool performance with CVD coating of Al2O3/TiCN inserts during machining of Inconel 718 alloys // Archive of Mechanical Engineering. 2021. Vol. 69. № 1. P. 59–75. doi: 10.24425/ame.2021.139647.
  23. Demirpolat H., Binali R., Patange A.D., Pardeshi S.S., Gnanasekaran S. Comparison of Tool Wear, Surface Roughness, Cutting Forces, Tool Tip Temperature, and Chip Shape during Sustainable Turning of Bearing Steel // Materials. 2023. Vol. 16. № 12. Article number 4408. doi: 10.3390/ma16124408.
  24. Martins P.S., Carneiro J.R.G., Ba E.C.T., Vieira V.F. Study on roughness and form errors linked with tool wear in the drilling process of an Al–Si alloy under high cutting speed using coated diamond-like carbon high-speed steel drill bits // Journal of Manufacturing Processes. 2021. Vol. 62. P. 711–719. doi: 10.1016/j.jmapro.2021.01.006.
  25. Zhuang Gullin, Liu Hanzhong, Zong Wenjun. Research on the Method of Reducing Dynamic Cutting Force in Aspheric Machining // Micromachines. 2023. Vol. 14. № 5. Article number 960. doi: 10.3390/mi14050960.
  26. Ellersiek L., Menze C., Sauer F., Denkena B., Möhring H.-Ch., Schulze V. Evaluation of methods for measuring tool-chip contact length in wet machining using different approaches (microtextured tool, in-situ visualization and restricted contact tool) // Production Engineering. 2022. Vol. 16. № 5. P. 635–646. doi: 10.1007/s11740-022-01127-w.
  27. Vukelic D., Simunovic K., Ivanov V., Sokac M., Kocovic V., Santosi V., Santosi Z., Simunovic G. Modelling of Flank and Crater Wear during Dry Turning of AISI 316L Stainless Steel as a Function of Tool Geometry Using the Response Surface Design // Tehnicki Vjesnik – Technical Gazette. 2024. Vol. 31. № 4. P. 1376–1384. doi: 10.17559/tv-20231226001235.
  28. Younas M., Khan M., Jaffery S.H.I., Khan Z., Khan N. Investigation of tool wear and energy consumption in machining Ti6Al4V alloy with uncoated tools // The International Journal of Advanced Manufacturing Technology. 2024. Vol. 132. № 7-8. P. 3785–3799. doi: 10.1007/s00170-024-13548-1.
  29. Çiftçi I. Machining of austenitic stainless steels using CVD multi-layer coated cemented carbide tools // Tribology International. 2006. Vol. 39. № 6. P. 565–569. doi: 10.1016/j.triboint.2005.05.005.
  30. Gokkaya H., Taşkesen A. The effects of cutting speed and feed rate on BUE-BUL formation, cutting forces and surface roughness when machining AA6351 (T6) alloy // Journal of Mechanical Engineering. 2008. Vol. 54. № 7-8. P. 521–530.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Шайлеш Рао А., Рао Ш., 2024

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах