СОВЕРШЕНСТВОВАНИЕ МАТЕМАТИЧЕСКОГО, МЕТОДИЧЕСКОГО И АЛГОРИТМИЧЕСКОГО ОБЕСПЕЧЕНИЯ РЕАЛИЗАЦИИ УКРУПНЕННОГО БЛОКА ПРОЕКТНЫХ ПРОЦЕДУР АНАЛИЗА ТРЕБОВАНИЙ К СБОРКЕ ВЫСОКОТОЧНЫХ ИЗДЕЛИЙ


Цитировать

Полный текст

Аннотация

В современных условиях потребность в изготовлении большого числа высокоточных приборов и машин возросла многократно. Именно поэтому проблема совершенствования изготовления подобных изделий приобретает первостепенное значение, так как к ним предъявляются постоянно ужесточающиеся требования. Существующие подходы к обеспечению качества и точности сборки не обладают достаточной степенью универсальности и не всегда могут быть реализованы при производстве высокоточной продукции. Для комплексного решения данной проблемы предложен комплексный подход - комплекс формализованных проектных процедур системы учета требований к сборке высокоточных изделий при проектировании технологических процессов механической обработки. Однако для установления связи между конструкторской и технологической подготовкой многономенклатурного производства, перехода к оценке производственной технологичности изделий и более глубокой интеграции данной системы в структуру системы автоматизированного планирования технологических процессов необходим поиск путей совершенствования существующих подходов разработанной системы. В статье подробно рассмотрен укрупненный блок проектных процедур анализа требований к сборке высокоточных изделий, так как данный этап непосредственно связан с конструкторской подготовкой производства, а исходные данные, полученные в ходе его реализации, обеспечивают качество выбора рациональных технологических процессов изготовления деталей. Предложены методы совершенствования математического, методического и алгоритмического обеспечения реализации данного укрупненного блока. Внедрение предложенных решений позволит эффективно выполнять конструкторский размерный анализ высокоточной сборочной единицы в автоматизированном режиме и формировать множество требований к сборке, что, как следствие, позволит обеспечить развитие цифровизации конструкторской и технологической подготовки производства и переход к интеллектуальным производственным системам.

Об авторах

А. В. Назарьев

Филиал ФГУП «Научно-производственный центр автоматики и приборостроения имени академика Н.А. Пилюгина» - «Производственное объединение «Корпус»

Автор, ответственный за переписку.
Email: alex121989@mail.ru
ORCID iD: 0000-0003-0610-6060

кандидат технических наук, инженер-конструктор 1-й категории

Россия

П. Ю. Бочкарев

Волгоградский государственный технический университет

Email: bpy@mail.ru
ORCID iD: 0000-0003-0587-6338

доктор технических наук, профессор, профессор кафедры «Технология машиностроения и прикладная механика» Камышинского института

Россия

Список литературы

  1. Суслов А.Г., Федонин О.Н., Петрешин Д.И. Фундаментальные основы обеспечения и повышения качества изделий машиностроения и авиакосмической техники // Вестник Брянского государственного технического университета. 2020. № 2. С. 4-10.
  2. Lin P., Li M., Kong X., Chen J., Huang G.Q., Wang M. Synchronisation for Smart Factory - Towards IOT-enabled Mechanisms // International Journal of Computer Integrated Manufacturing. 2018. Vol. 31. № 7. P. 624-635.
  3. Польский Е.А. Сорокин С.В. Технологическое обеспечение надежности деталей узлов трения наукоемких сборочных единиц // Вестник Брянского государственного технического университета. 2019. № 4. С. 19-26.
  4. Чигиринский Ю.Л. Математические методы в технологическом проектировании // Наукоемкие технологии в машиностроении. 2018. № 4. С. 13-20.
  5. Li X., Zhang S., Huang R., Huang B., Xu C., Zhang Y. A Survey of Knowledge Representation Methods and Applications in Machining Process Planning // International journal of advanced manufacturing technology. 2018. Vol. 98. № 9-12. P. 3041-3059.
  6. Базров Б.М., Троицкий А.А. Преобразование коэффициентов технологичности при их групповом влиянии на трудоёмкость изготовления изделия // Наукоемкие технологии в машиностроении. 2020. № 11. С. 8-15.
  7. Вартанов М.В., Чушенков И.И. Методология оценки технологичности изделий машиностроения // Станкоинструмент. 2019. № 2. С. 14-23.
  8. Turner C.J., Emmanouilidis C., Tomiyama T., Tiwari A., Roy R. Intelligent Decision Support for Maintenance: an Overview and Future Trends // International Journal of Computer Integrated Manufacturing. 2019. Vol. 32. № 10. P. 936-959.
  9. Назарьев А.В., Бочкарев П.Ю. Технологическое обеспечение изготовления высокоточных сборочных узлов // Вектор науки Тольяттинского государственного университета. 2017. № 3. С. 84-89.
  10. Назарьев А.В., Бочкарев П.Ю. Алгоритмическое обеспечение реализации комплекса проектных процедур системы учета требований к сборке при проектировании технологических процессов механической обработки // Справочник. Инженерный журнал с приложением. 2020. № 12. С. 34-42.
  11. Иванов А.А., Бочкарев П.Ю. Формализация описания и метода поиска оптимальной реализации технологических процессов механообработки в системе планирования технологических процессов // Вестник Саратовского государственного технического университета. 2015. Т. 3. № 1. С. 76-85.
  12. Разманов И.А., Митин С.Г., Бочкарев П.Ю. Формирование методики ранжирования проектных процедур в системе планирования многономенклатурных технологических процессов // Вектор науки Тольяттинского государственного университета. 2019. № 1. С. 58-63.
  13. Лелюхин В.Е., Колесникова О.В. Анализ и расчет размерных цепей на основе графов размерных связей // Вестник Инженерной школы Дальневосточного Федерального университета. 2015. № 4. С. 29-35.
  14. Гречников Ф.В., Тлустенко С.Ф. Проектирование технологических процессов сборки по критериям точности // Вестник Самарского государственного аэрокосмического университета им. академика С.П. Королёва (Национального исследовательского университета). 2011. № 3-4. С. 38-43.
  15. Chakraborty S., Chowdhury R. Graph-theoretic-approach-assisted Gaussian Process for Nonlinear Stochastic Dynamic Analysis Under Generalized Loading // Journal of Engineering Mechanics. 2019. Vol. 145. № 12. Article number 04019105.
  16. Агафонова Е.Н., Захаров О.В. Классификация деталей машин с позиции их измерения // Современные материалы, техника и технологии. 2018. № 2. С. 12-16.
  17. Гаер М.А., Шабалин А.В. Геометрическая классификация деталей при анализе сборок с пространственными допусками // Известия МГТУ МАМИ. 2008. № 2. С. 355-361.
  18. Гаер М.А., Кузьмина Е.Ю. Конфигурационные многообразия квадратичных форм поверхностей деталей и сборок // Современные технологии. Системный анализ. Моделирование. 2019. № 2. С. 49-66.
  19. Базров Б.М. Основы технологии машиностроения. М.: Машиностроение, 2005. 736 с.
  20. Суслов А.Г. Технология машиностроения. М.: Кнорус, 2013. 336 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© ,



Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах