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Features of microstructure formation in the AK4-1 and AK12D aluminum alloys
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Abstract: Friction stir processing is one of the modern methods of local modification of the surface of aluminum alloys
in the solid-phase state, which provides the dispersion of structural components. In heat-hardened aluminum alloys with
a matrix type structure, heat treatment following after friction stir processing can lead to abnormal grain growth in the stir
zone. However, in alloys with the structure close to microduplex type, a fine-grained structure can be formed after friction
stir processing and heat treatment. This work is aimed at evaluating the possibility of increasing the microstructure thermal
stability of the AK4-1 (Al-Cu—Mg—Fe—Si—Ni) matrix-type aluminum alloy. For this purpose, AK12D (Al-Si—Cu-Ni-Mg)
aluminum alloy with the structure close to microduplex type was locally mixed into the studied alloy by friction stir pro-
cessing. Subsequent T6 heat treatment was carried out according to the standard mode for the AK4-1 alloy. Studies showed
that the stir zone had an elliptical shape with an onion-ring structure. This structure comprised alternating rings with dif-
ferent amounts and sizes of excess phases. At the same time, in the stir zone center, the width of rings and the average area
of excess phases were larger compared to the stir zone periphery, where the width of rings and the average area of particles
were smaller. The average area of excess phases in the rings with their higher content was smaller than in
the rings with their lower content. This distribution of excess phases leads to the formation of a fine-grained microstruc-
ture, where the average size of grains depends on the interparticle distance in the a-Al solid solution.
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recovery [2]. Such a structure often leads to an optimal

INTRODUCTION

Friction stir processing (FSP), as one of the methods of
surface hardening of solid-phase aluminum alloys, has per-
spectives for development in various industries, since,
compared to other traditional methods of surface treatment,
it is free of such disadvantages as agglomeration of additive
particles, formation of unwanted phases, and interphase
reactions due to the high processing temperature, the neces-
sity of using additional processing methods and complex
technological equipment, low processing efficiency, etc.
[1]. This method of local surface modification of alloys,
based on the physical principles of friction stir welding is
caused by severe plastic deformation at elevated tempera-
tures, and provides the formation of a fine-grained structure
due to the mechanisms of dynamic recrystallisation and

combination of strength and ductility [3-5].

In heat-hardened aluminum alloys, the strength charac-
teristics are largely determined by coherent dispersed parti-
cles, the formation of which occurs due to precipitation
hardening during heat treatment, which includes quenching
and subsequent artificial aging [6]. However, a significant
temperature gradient occurs during friction stir pro-
cessing/welding [7]. In this case, particles of secondary
phases in the processed alloy can undergo complex trans-
formations, which can lead to degradation of strength cha-
racteristics. For example, in the thermo-mechanically affect-
ed zone, which is subjected to a relatively low temperature
effect (=0.7-0.6 Tmelt, Tmelt is the homologous melting
temperature), as a rule, coagulation of excess phases is ob-
served, which can lead to a coherence breakdown at
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the interphase boundaries [8]. In the stir zone heated to high
temperatures (~0.9-0.75 Tmelt), particles of secondary
phases usually dissolve in the aluminum matrix. Moreover,
depending on the deformation temperature during FSP,
upon subsequent cooling of the alloy to room temperature,
dispersoids can partially precipitate from the o-Al solid
solution [9-11], contributing to a partial restoration of
the strength characteristics.

The required level of mechanical properties of alumi-
num alloys after friction stir processing can be achieved by
subsequent re-quenching and artificial ageing. In this case,
a relatively uniform release of hardening particles is pro-
vided in different areas of the treatment zone. However,
high temperature treatment often leads to abnormal grain
growth in the stir zone, which was observed in various alu-
minum alloys with a matrix type structure [12—14]. Doping
of aluminum alloys with high-strength second-phase parti-
cles, such as SiC Al,Os3, B4C, SiO», TiC, fullerene, carbon
nanotubes, graphene, etc., followed by the formation of
aluminum-matrix composites, does not always lead to
the suppression of abnormal grain growth [15]. Abnormal
grain growth is usually described in terms of so-called
Humphrey’s “cellular model” [16; 17], according to which
the anomalous nature of grain growth is associated either
with an increased content of low-angle boundaries, or with
a relatively low concentration of particles of secondary
phases. Nevertheless, it was shown in [18] that a fine-
grained structure, with an average grain size of about
3.3+0.1 um is formed in the AK12D aluminum alloy after
FSP and T6 heat treatment. This alloy is characterized by
a structure close to that of the microduplex type and con-
sisting of an o-Al matrix, and a large number of excess
phases, including the eutectic silicon particles [6]. In this
case, a large proportion of dispersed excess phases hindered
the migration rate of grain boundaries under the action of
the Zener retarding force [19].

Since doping of aluminum matrix alloys, with the se-
cond-phase particles does not always help to suppress
the anomalous nature of grain growth. It was suggested that
a local increase in particles of excess phases due to the mix-
ing of a microduplex-type aluminum alloy into it, can lead
to the formation of a fine-grained structure after high-
temperature treatment.

The purpose of this work is to evaluate the possibility of
increasing the thermal stability of the AK4-1 aluminum
alloy microstructure by the local mixing of the AK12D
alloy into it by friction stir processing, and subsequent T6
heat treatment.

METHODS

In this work, the authors considered an commercial heat-
resistant aluminum alloy AK4-1 with the following chemical
composition:  Al-1.97%Cu—1.73%Mg-1.01%Fe—0.98%Si—
0.96%Ni-0.24%Co (wt. %). From a hot-pressed AK4-1 alloy
bar ¥140 mm, plates were cut in the transverse direction,
which were machined with a surface roughness of 0.6 Ra.
The final thickness of the plates was 7 mm. Grooves 2 mm
wide and 2 mm deep were cut out in the surfaces of these
plates. As a reinforcing material, the industrial heat-resistant
aluminum alloy AK12D with the following chemical
composition was used: Al-12.8%Si—1.67%Cu—1.03%Ni—
0.84%Mg—0.33%Mn—-0.23%Co0—-0.24%Fe (wt. %). Inserts in

the form of rectangular parallelepipeds made of AK12D al-
loy 2 mm wide and 2 mm high were placed in the grooves of
AK4-1 alloy plates. The blank part was attached to the table
of a modernized universal milling machine. In order for
the inserts in the grooves not to move during the FSP process,
the surface of this area was “rubbed” with hangers. In this
case, the tool was advanced along the blank surface normal.

Then, a single-pass friction stir processing was per-
formed. A processing tool with a cylindrical pin @6 mm
and a height of 4 mm with a left-hand thread was used. The
processing tool was introduced into the alloy under study at
an angle of a=2° to the surface of the blank part, until its
shoulders came into contact with the surface to be subjected
to FSP. The speed modes of the processing tool were
the following: rotation speed ® — 1000 rpm, feed rate
v — 30 mm/min. T6 heat treatment of all studied composi-
tions of aluminum alloys was carried out according to the
following mode: quenching at a temperature of 530+5 °C,
artificial aging at 190+2 °C for 10 h.

Structural changes were evaluated in the initial heat-
treated state, as well as in the state after FSP and subsequent
T6 heat treatment. The cross sections of the processed blank
parts were prepared for macro- and microstructural analysis.
To study the macrostructure and the grain structure, the sam-
ples were etched in a solution of the following composition:
H>O (60 ml), HNO3 (35 ml), HF (5 ml).

Macrostructural analysis of the cross sections of the sam-
ples was carried out using a ZEISS Axio Scope.Al optical
microscope (OM). Microstructural studies were carried out on
a Tescan Mira 3LMH scanning electron microscope (SEM)
using secondary electron (SE), and backscattered electron
(BSE) detectors. Energy-dispersive spectral analysis (EDS)
was performed on a Tescan Vega 3SBH SEM. Quantification
of the average area (S) of particles of primary excess interme-
tallic phases (Pr) and silicon particles (Si), was carried out on
the polished surface of the samples, using computer analysis
techniques by graphical selection of a group of particles of
each of the studied phases. For each treatment zone, quantita-
tive measurements were carried out on the regions equal in
area. The average grain size was estimated by the random line-
ar intercept method in five fields of vision. When assessing
the primary excess phases and the grain structure, at least 300
structural elements were measured. Processing of research
results was carried out with a confidence level of 95 %.

RESULTS

Initial microstructure

A typical microstructure of the AK4-1 aluminum alloy
after T6 heat treatment consists of an a-Al solid solution,
and a certain amount of excess intermetallide phases locat-
ed in the direction of material flow during hot deformation
(Fig. 1 a). According to [6], the following primary phases
of crystallization origin can be present in the Al-Cu—-Mg-—
Ni-Fe system alloys: AlgFeNi, Mg,Si, Al;,Cu,Fe, and
Al,CuMg. After hardening heat treatment, metastable se-
condary hardening Al,CuMg phases are formed in these
alloys [6]. In the initial heat-treated state, a grain structure
recrystallized with an average grain size of 78.6+8.0 um is
observed in the alloy.

A typical microstructure of the AK12D aluminum alloy
after T6 heat treatment contains a certain amount of primary
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intermetallide phases and silicon, as well as a certain
amount of secondary hardening phases (Fig.1Db). In
the Al-Si—Cu—Ni—-Mg—Mn-Fe system alloys rich in silicon,
in addition to the (Al+Si) eutectics, the presence of the fol-
lowing primary phases of crystallization origin can be ex-
pected: AlsFeSi, AlgFe,Si, Alis(Fe, Mn),Si, FeNiAl,
AlgFeMg3Si6, A13Ni, A17CU4Ni, Al3(Ni, Cu)z, AlzCu,
Mg,Si, AleCuMgsSis [6]. When using T6 heat treatment,
the formation of metastable secondary hardening phases,
such as Al,Cu, MgSi, AlsCu,MgsSis, AlLCuMg, is possible
[6]. Hardening heat treatment of the alloy leads to the for-
mation of a grain microstructure with an average grain size
of 11.5+0.4 um.

Macrostructure after FSP

Fig. 3 shows a typical macrostructure of the AK4-1 alumi-
num alloy at local mixing of the AK12D alloy into it by fric-
tion stir processing. It can be observed that a defect-free pro-
cessing area is formed. A stir zone consisting of a mixture of
AK12D and AK4-1 alloys, a thermo-mechanical effect zone,
and the base material zone corresponding to the AK4-1 alloy
are visible in the structure (Fig. 2). In the near-surface region
between the stir zone and the area of contact of the processing
tool with a blank part, a coarse-grained microstructure of
the AK4-1 alloy is observed. The stir zone has an elliptical
shape with concentric circles progressively decreasing in radi-
us, referred to as the “onion-ring” structure.

Fig. 1. Typical microstructure of the AK4-1 (a) and AK12D (b) alloys in the initial heat-treated state.
IPhP" — primary intermetallic phases, Si — silicon particles. BSE mode SEM images
Puc. 1. Tunuunas muxpocmpyxmypa cniaeos AK4-1 (a) u AK12]] (b) 6 ucxoonom mepmoo6pabomanHom coCmosiHuu.
IPh"" — nepsuunsie unmepmemannuonvie gasvl, Si — vacmuywr kpemnus. BSE-pescum coemxu

Tool Movement Direction

©

AK4-1/AK12D

Fig. 2. Macrostructure of the AK4-1 aluminum alloy after mixing into it the AK12D alloy
via friction stir processing at the w=1000 rpm and v=30 mm/min.
AS — advancing side, RS — retreating side, SZ — stir zone, TMAZ —thermo-mechanical affected zone,
BM — base metal (initial alloy). Optical metallography
Puc. 2. Makpocmpoenue antomunuesozo cniaséa AK4-1 nocae samewusanus 6 neco cnaasa AKI12/]
06pabomxkoll mpeHuem ¢ nepemewiuganuem npu ckopocmsax oegpopmayuu @=1000 06/mur u v=30 ymm/mun.
AS — nacmynarowaa cmopona, RS — omemynarowas cmopoua, SZ — 30Ha nepemeusanus,
TMAZ — 30na mepmomexanuyeckoeo énusinust, BM — ocnosHoti memann (ucxoouwiti cniag). Onmuueckas memannoepagpus
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Microstructure after FSP

The “onion rings” structure is heterogeneous over
the cross section of the stir zone, and represents alternating
rings with different amounts and sizes of excess phases
(Fig. 3). The width of the rings decreases from the stir zone
center to the periphery. Friction stir processing leads to
intense crushing of particles of excess phases. A quantita-
tive assessment of the alloy microstructure is given in
Table 1. The average area of particles in rings with a higher
content of excess phases is smaller than in rings where
the number of phases is lower. It should be noted that
eutectic silicon particles are concentrated in rings with
a higher content of primary phases (Fig. 4). This is also
evidenced by the EDS analysis results. The corresponding
distribution maps for the main alloying elements are shown
in Fig. 5.

The study of the grain structure showed that after FSP,
and T6 heat treatment, a fine-grained microstructure is
formed in the stir zone (Fig. 6), the average grain size
(Table 1) of which depends on the amount of excess phases
located in different parts of the stir zone.

DISCUSSION

As a rule, the stir zone shape depends on the processing
tool geometry, the technological parameters of processing,
the thermal conductivity of the material, and the tempera-
ture of the blank part [20; 21]. The stir zone shape is much
determined by the temperature of the heated alloy in
the near-surface regions, during friction between the pro-
cessing tool shoulders and the blank part. During friction
stir processing, a stir zone typically assumes a basin-like
shape with a widening at the blank part surface or an ellip-
tical shape [20; 21].

According to findings presented in [21], a stir zone with
a basin-like shape is created during low-speed tool rotation.
In this case, the alloy yield strength is higher due to the low
temperature of the heated material, and consequently, its
volume subjected to deformation (caused by the pin mo-
tion) is smaller. With an increase in the rotation velocity of

the tool, the temperature of the heated alloy increases, con-
tributing to a decrease in the yield strength. An increase in
the volume of the material that is involved in the deformation
process, and the formation of an elliptical stir zone (Fig. 3).
The formation of the “onion rings” structure occurs due to
a periodic change in the stress state in the three-dimensional
flow of a plastically deformable alloy, which is caused by the
movement of the processing tool (shoulders and pins) [22—
24]. As a result, the stir zone structure exhibits a periodically
changing average grain size [25], alternating bands (rings)
enriched in excess phases [26], different grain orientations
[27], and texture changes [28]. Moreover, the temperature of
deformation during the FSP process is non-uniform over the
cross section of the stir zone [29-31]. Therefore, in the struc-
ture of the treatment zone, rings are observed, the width of
which decreases from its center to the periphery.

As noted earlier, subsequent T6 heat treatment (in-
cluding solution heat treatment and artificial aging) can
lead to abnormal grain growth in the treatment area,
which presumably indicates a low thermal stability of
the microstructure. The AKI12D alloy, in contrast to
the AK4-1 alloy, is characterized by a structure close to
that of the microduplex type [6]. The formation of a fine-
grained microstructure during mixing of the AK12D al-
loy into the AK4-1 alloy by friction stir processing and
subsequent T6 heat treatment occurs due to the fact that
a large number of excess phase particles of both alloys,
has a retarding effect on the migration of grain bounda-
ries. In areas where the number of excess phases is
greater, the average grain size is smaller. This is related
to the smaller distance between the excess phase parti-
cles in the a-Al solid solution.

CONCLUSIONS

The authors studied the structure of the AK4-1 alu-
minum alloy, in which the AK12D alloy was locally
mixed by friction stir processing, and subsequent T6
heat treatment carried out according to the standard
mode for the AK4-1 alloy.

Fig. 3. Typical microstructure of the polished stir zone surface.
Ring fragments in the center (a) and on the periphery of stir zone (b) are shown. BSE mode SEM images
Puc. 3. Tunuynas MuKpocmpykmypa noaupoganHoll ROGEPXHOCHU 30Hbl NePEeMEUUBAHUSL.
Ipusedenvt ppazmenmol Koney 6 yenmpe (a) u Ha nepugpepuu 301l nepemewusanusi (b). BSE-pexcum cvemru

118

Frontier Materials & Technologies. 2023. Ne 3



Khalikova G.R., Basyrova R.A., Trifonov V.G. “Features of microstructure formation in the AK4-1 and AK12D aluminum alloys...”

Table 1. Quantitative estimation of the AK4-1 aluminum alloy microstructure after mixing the AK12D alloy

into it via friction stir processing

Taonuya 1. Konuuecmeennas oyeHka MUKpOCmMpyKmypbl antomunuegozo cniasa AK4-1 nocie 3amewusanusa 6 nezo cnnasa AKI12J]
00pabomKoli mperuem ¢ nepemeumueaniem

State
Friction stir treatment
. Initial state
Microstructural elements Stir zone AK4-1/AK12D
of alloys
Center Periphery
AK4-1 AK12D
SZ SZ-1 SZ SZ-1
IPh pm? 12.8+1.0 39.9+4.0 13.5+0.4 0.17+0.01 10.3+£0.3 0.13£0.01
S
Si pm? - 45.9+5.7 - 2.240.1 1.2+0.1
d pm 78.6+8.0 11.5+0.4 7.1+£0.2 3.0+0.1 4.0+0.1

Note. SZ — rings with a low content of excess phases;
SZ-1 —rings with a higher content of excess phases;
S — average area of primary intermetallic phases (IPh) and Si particles;
d — average grain size. For comparison, a quantitative estimation of the structure in the initial heat-treated state of the AK4-1
and AK12D alloys is given.
Tpumeuanue. SZ — konvya ¢ manvlm cooepircanuem usdbimoyHvix as;
SZ-1 — xonvya ¢ 60abUUM cOOepAHCaHueM U3ObIMOYHBIX (Pa3;
S — cpednas nnowade nepsuuHbIX UHMepMemarLiuonvix gas IPh u vacmuy Si;
d — cpeonuii pasmep 3epen. [{ns cpashenus npusedena KonuuecmeenHas OyeHKa CIMpyKmypsl 8 UCXOOHOM mepmoodpabomanHom
cocmosinuu cnnaeos AK4-1u AKI12]].

Fig. 4. Typical microstructure of the polished stir zone surface.
Fragments of the boundaries between the rings with varying degrees of excess phases in the center (a)
and on the periphery (b) of the stir zone are shown. IPh — intermetallic phases, Si — silicon particles. BSE mode SEM images
Puc. 4. Tunuynas MuKpocmpykmypa noauposanHoll N08ePXHOCHU 30Hbl NePeMeUUBAHUSL.
Tlpusedenvt ghpacmenmol eparuy mexncoy Korbyamu ¢ OOTLUUM U MEHbULUM KOIUYECTEOM U30bIMOUHbIX (ha3 6 yenmpe (a)
u na nepugpepuu (b) sonvt nepemewusanus. IPh — unmepmemannuonvle ghazvl, Si — uacmuyvl kpemnus. BSE-pesxcum cvemru
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25 nm

Fig. 5. Distribution maps of the primary alloying elements in the center part of the polished stir zone surface. EDS analysis
Puc. 5. Kapmei pacnpedenenust 0CHOGHbIX 1e2UpyIOuux 31eMeHMOo8 8 YeHMPAIbHOU Yacmy NOIUPOBAHHOU NOBEPXHOCIU
30Hbl nepemewiusanus. I4C-ananus

Fig. 6. Typical grain microstructure in the center (a) and on the periphery (b) of the stir zone. SE mode SEM images
Puc. 6. Tunuunas 3epennas Mukpocmpykmypa 6 yenmpe (a) u na nepugepuu (b) 3onvl nepemewusanus. SE-pexcum coemxu
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It is shown that after FSP, a defect-free treatment area
was formed, the stir zone of which had an elliptical shape
with the “onion rings” structure. The width of these rings
decreased from the stir zone center to the periphery.
The onion structure consisted of alternating rings with dif-
ferent amounts and sizes of excess phases.

It was established that the friction stir processing led to
intense crushing of the primary excess phases of both al-
loys. At the same time, the average area of particles in rings
with a higher content of them is smaller than in rings where
their number is lower. Moreover, eutectic silicon particles
are concentrated in rings with a higher content of primary
phases.

It was found that the nonuniform distribution of parti-
cles of excess phases led to the formation of a fine-grained
microstructure, the average grain size of which depends on
the interparticle distance in the a-Al solid solution.
The minimum average grain size was observed in the stir
zone center in rings with a higher content of excess phases
and was 3.0+0.1 um. The largest average grain size reached
7.140.2 pm and was formed in the stir zone center in rings
with a low content of excess phases.
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Annomayun: O6paboTKa TPEHHEM C TIEPEMENINBAHNEM — OAWH M3 COBPEMEHHBIX METOIOB JIOKAJIEHOTO MOTU(HIIAPO-
BaHUs ITOBEPXHOCTH ANIOMHMHHEBBIX CILIABOB B TBEPAO(HA3HOM COCTOSHUH, 00CCIECUNBAIOIINNA JUCIEPIHPOBaHUE CTPYK-
TYPHBIX COCTaBISIIOIINX. B TepMHUUYeCKH yNpOYHAEMbIX aTIOMHHHEBBIX CIIaBaX CO CTPYKTYPOH MaTpHUYHOTO THIA TOCIIe-
Jytomias mociie 00paboTKM TPEeHUEM C MepeMELIMBaHUEM TepMOOOpaboTKa MOXKET MPUBOAUTH K aHOMAIBHOMY POCTY 3e-
peH B 30He nepememBanus. OTHAKO B CIUIaBaxX, CTPYKTYpa KOTOPBIX OJIM3Ka K MUKPOAYIIEKCHOMY THITY, TTOCIie 00paboT-
KA TPEHHEM C MepeMEIIMBAHUEM M TepMOOOpabOTKM MOXeT c(OpMHPOBATHCS MENKO3EPHUCTAs CTpyKTypa. Pabora
HalpaBjieHa Ha OLIEHKY BO3MO)KHOCTH ITOBBIIIEHHS] TEPMUYECKON CTaOMIBHOCTH MUKPOCTPYKTYPbI aJIIOMUHHEBOTO CIIIaBa
AK4-1 (Al-Cu-Mg-Fe—Si—Ni) marpuunoro tuma. [y 3TOro B MCCleIyeMbli CIIaB 00pabOTKOIM TPEHHEM C IepeMenIn-
BaHMEM JIOKaJbHO 3amernBaics amomuHueBblid cruiaB AK12/] (Al-Si—Cu—-Ni-Mg) co cTpyKTypoii, OMM3KOH K MHK-
poxymnekcHomy Ttumy. [locienytomast ynpouHsiomas TepMooOpadOTKa NMPOBOAMIIACH 110 CTaHJAPTHOMY PEXHUMY JUIA
crmaBa AK4-1. MccnenoBanust moka3aym, 4To 30Ha MEPEMEIINBAHUS UMEET JIUIMITHIECKYI0 (POPMY CO CTPYKTYpPOH «Iy-
KOBHYHBIX KoJIel». Takasi CTpyKTypa MpeicTaBisieT co00i depeayronrecs: Koublia ¢ pa3HbIM KOJIWYECTBOM M Pa3MepoM
n30bITOUHBIX (a3. IIpm 3TOM B HEHTpe 30HBI MEpEeMENIMBAHMS IIUPUHA KOJICI] W CPEeNHss IUIOImans M30BITOUHBIX (a3
GostpIlie 1O CPaBHEHUIO ¢ Mepudepreit 30HbI MEPEMENINBAHNS, I€ MNPUHA KOJIEI] U CPEIHAS IUIOMAAb YaCTUI] MEHBIIIE.
Cpemusis Iiomans 9acTHIl H30BITOYHBIX (a3 B KOJbIaX ¢ OOMBIIAM MX COAEPKaHINEM MEHBIIE 10 CPABHEHUIO C KOJBIIAMH,
I7Ie UX KOIM4YecTBO Hike. Takoe pacnpeneneHne H30BITOYHBIX (a3 IPpUBOAUT K (POPMHUPOBAHUIO MENKO3EPHUCTONH MHUKpO-
CTPYKTYDBbI, CPEAHHH pa3Mep KOTOPOH 3aBUCUT OT MEXYACTUYHOTO pacCTOSHUSA B a-Al TBepIOM pacTBoOpe.

Knrwouesvie crosa: amomunuessie crasbl; AK4-1; AK12/1; 06paboTka TpeHHEM ¢ epeMelInBaHueM; TepMooOpadoT-
Ka; TepMHYECKasi CTaOMIBHOCTD; CTPYKTYpa JIyKOBUYHBIX KOJIEI; TYKOBUYHO-KOJIbIIEBAs CTPYKTYpa

bnazooapnocmu: O6paboTKa TPEHUEM C TIEpEMENINBaHIEM, UCCIIEI0BAHIUE MAKPOCTPOCHHSI M KOJIMUECTBEHHAs OLICH-
Ka MUKPOCTPYKTYPBI CIUIAaBOB BBINOJIHEHBI 3a cueT rpaHTa Poccuiickoro Haygnoro ¢onma Ne 22-29-01318. Dueproaucnep-
CHOHHBIN CIIEKTPAJIbHBIN aHAIU3 TIOJIEPXKaH B paMKax IMpOrpaMMbl QyHJaMEHTAIBHBIX UCCIIEJOBAHUH U TOCYAapCTBEHHO-
ro 3agaHnsi MUHHCTEpCTBa HayKU | BBICIIETro oOpa3oBanus PO.

MHUKpOCTpYKTypHBIEC NCCIEAOBAHNS HA PACTPOBBIX MEKTPOHHBIX MUKPOCKOIIAX BHITOJHEHBI Ha 00opynoBanun LlenTpa
KOJUIEKTUBHOTO TOJIb30BaHMS «CTPYKTypHBIE U (PHU3NKO-MEXaHNYECKHe nuccienoBanus Marepuanos» UIICM PAH.

Jlna yumupoeanun: Xanukosa [.P., baceipoBa P.A., Tpudonos B.I. OcobeHHOCTH (POPMUPOBAHHUS MUKPOCTPYKTYPBI
amrfomuHUEBHIX ci1aBoB AK4-1 m AK12]] mocne ux coBMecTHON 00paboTKK TpeHneM ¢ nepememmBanueM // Frontier Ma-
terials & Technologies. 2023. Ne 3. C. 115-124. DOI: 10.18323/2782-4039-2023-3-65-11.
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