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Abstract: In the process of formation of composite coatings, partial dissolution of strengthening particles (most often
carbides) in the matrix is possible; therefore, in some cases, the material creation mode is chosen taking into account
the volume fraction of primary carbides not dissolved during coating deposition. The methods currently widely used for
calculating the volume fraction of carbides in the structure of composite coatings (manual point method and programs im-
plementing classical computer vision methods) have limitations in terms of the possibility of automation. It is expected
that performing semantic segmentation using convolutional neural networks will improve both the performance of the pro-
cess and the accuracy of carbide detection. In the work, multiclass semantic segmentation was carried out including
the classification on the image of pores and areas that are not a microstructure. The authors used two neural networks
based on DeepLab-v3 trained with different loss functions (IoU Loss and Dice Loss). The initial data were images of vari-
ous sizes from electron and optical microscopes, with spherical and angular carbides darker and lighter than the matrix, in
some cases with pores and areas not related to the microstructure. The paper presents mask images consisting of four clas-
ses, created manually and by two trained neural networks. The study shows that the networks recognize pores, areas not
related to the microstructure, and perfectly segment spherical carbides in images, regardless of their color relative to
the matrix and the presence of pores in the structure. The authors compared the proportion of carbides in the microstruc-

ture of coatings determined by two neural networks and a manual point method.
Keywords: composite coatings; carbides; optical microscopy; scanning electron microscopy; semantic segmentation;

neural networks.
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INTRODUCTION

At present, the industry is imposing increasingly strict
requirements to strength, wear resistance, durability, and
other working properties of machine parts and tools. To
solve the problem of improving the tribological properties
of products, new wear-resistant materials and coatings, in-
cluding composite ones, are constantly being developed [1].
One of the most promising coatings for operation under
abrasive wear conditions are “carbide — metal matrix” com-
posite materials [2—4].

For the effective composite coating formation, it is ne-
cessary that the matrix has a relatively low melting point,
and the carbides have a high one [5]. Thus, when creating
a material, a wear-resistant filler will be provided in the
form of initial primary particles not dissolved in the matrix.
However, carbides can partially dissolve in the matrix when
creating composite coatings [6—8], thereby reducing their
wear resistance [9]. In this regard, in a number of cases,

when developing a coating technology for the resulting
prototypes, both the composition and effective properties
are studied, and the volume of coarse primary strengthening
particles in the microstructural material is determined.

Currently, the standardised method for determining
the phase volume fraction is the manual point method ac-
cording to ASTM E 562-02, which is a labour-intensive
process. Simplification of the process is possible by using
programs implementing classical computer vision methods,
such as Siams, Thixomet, ImageJ, JMicroVision, etc. [10;
11]. However, it was shown in [12] that the use of classical
computer vision methods has a number of limitations, that
make it difficult to automate the process.

The application of neural networks for segmentation of
images of composite materials is a possible problem solu-
tion. In this case, semantic segmentation, the process of
understanding images at the pixel level [13], is performed,
which allows dividing images into the areas corresponding
to the semantic class in a predetermined list. A neural
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network studies the features of the classes using pre-
prepared masks — images marked by different colours. Se-
mantic segmentation combines object detection, shape
recognition, and classification.

The use of convolutional neural networks makes it pos-
sible to significantly improve the semantic segmentation
performance [14]. Over the past few years, many semantic
segmentation models, based on convolutional neural net-
works have demonstrated good performance in the image
segmentation tasks, such as FCN, SegNet, RefineNet,
U-net, PSPNet, and DeepLab [13; 15; 16]. To produce
segmentation maps, the DeepLab model implements an
architecture based on a convolutional neural network. In
addition to conventional convolutions, discharged convolu-
tion kernels are used, which allow considering, more spatial
information without increasing the number of parameters
[17]. A more advanced DeepLab-v3 version is characteri-
sed by the improved performance at high segmentation ac-
curacy [18].

In the work [12], WC tungsten carbide particles were
segmented in the structure of NiCrBSi coatings using
U-net and LinkNet networks. At the same time, the task
of one-class segmentation was solved: pixels were iden-
tified, which belonged and did not belong to carbides.
The authors of the work note that the trained models had
a tendency for incorrect classification of pores, related to
the class of carbides.

The present work aims to determine the volume frac-
tion of primary carbides in the microstructure of compo-
site materials, using trained neural networks, based on
DeepLab-v3 for semantic segmentation. An implementa-
tion feature is multiclass segmentation including classi-
fication by image of pores and domains that are not
a microstructure.

METHODS

The initial data were images of the microstructure of
composite coatings based on nickel and iron with coarse
primary tungsten, titanium, and chromium carbides, ob-
tained using a Tescan VEGA II XMU scanning electron
microscope and the optical system of a Shimadzu HMV-
G21IDT microhardness tester. The use of two different
methods allowed obtaining images with different characte-
ristics: different sizes (768x840 and 640x480 pixels),
TIFF/JPG formats, carbides in microphotographs are lighter
and darker than the matrix, the presence/absence of areas
that are not a microstructure (areas with shooting parame-
ters and a scale bar). Moreover, the images obtained by
both methods were characterised by the presence of pores
on some of them, as well as the presence of two types of
carbides: spherical and angular. The number of original
images was 41.

For convenience, all files were converted to the PNG
format. The data set was marked manually in MS Paint
(obtaining masks — ground truth images), using four co-
lours: dark gray on the mask image — carbides, black —
pores, white — the rest of the microstructure, light gray —
the area that is not a microstructure.

The implementation of the deeplabv3 resnet101 model
from the torchvision library was taken as a neural network.
As the base for the deeplabv3 resnet101 model, the ResNet

image classification network of the resnetl01 version pre-
trained on the Imagenet dataset was used. By default,
the number of recognisable classes in the DeepLab-v3 net-
work is 21. In the work, the head of the network was re-
trained, with the replacement of the number of output layers
in the last convolution by 4 — according to the number of
identifiable classes. At the network output, a float tensor
with the size of (B, C, H, W) is obtained, where B is
the batch size, C is the number of classes, H is the image
height, and W is the image width.

To train the network, the authors used the Adam opti-
mizer. According to the results of preliminary tests, from
the traditional range of learning rates for Adam from 107*
to 1073, a learning rate of 3-10~* was chosen. The batch size
was equal to 32. At the same time, 80 training and
20 testing iterations were performed at each training epoch.
The number of epochs was 20.

Two networks were created with the same parameters
except for the loss function. For one network, the loss func-
tion was based on the Jaccard distance metric, known as
IoU (Intersection over Union), and for the other, on
the Sérensen—Dice metric (Dice) [19].

Five images with different features were selected for
the test set. The remaining 36 images were subjected to
the following processing. Since it is preferable to train
a neural network using images of the same size, a size of
224x224 pixels was chosen, corresponding to the re-
commended size for the ResNet network, on the basis of
which the selected DeepLab-v3 model is built. Frag-
ments of 224x224 pixels were cut out from the original
images and masks with a random step from 50 to
65 pixels along each axis. Then the original images were
reduced twice, and the procedure was repeated for
the reduced images. The division of the obtained
3148 images into training and testing sets was performed
randomly with a ratio of 0.8:0.2.

The trained model allows building a mask from a pho-
tograph of a microstructure of arbitrary resolution. To do
this, the program cuts the original image into fragments of
224x224 pixels. If the size (width or height) of the original
image is not a multiple of 224, the last (in horizontal or
vertical direction) square may have an intersection with
the penultimate one. The network processes each fragment
separately, and then the mask of the entire image is as-
sembled in reverse order. The mask obtained as a result of
the neural network operation allows calculating the vo-
lume fraction of the content of carbides (dark gray pixels)
in the microstructure image as a percentage. In this case,
areas not related to the microstructure (light gray pixels)
are subtracted from the calculation of the total area occu-
pied by the microstructure.

Comparison of the proportion of carbides, in the micro-
structure, determined using artificial intelligence was car-
ried out, applying a manual point method for determining
the volume fraction of phases according to ASTM E 562.
To do this, a 100-points grid was applied to the test images
(Fig. 1). The volume fraction of carbides was calculated as
the ratio of the number of grid points fell on the carbide
to the total number of points. In the case of a point hitting
the “carbide-matrix” boundary, it was considered as be-
longing to both phases, so its contribution to the calculation
of the proportion of carbides was 0.5.
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Fig. 1. An example of determining the fraction of carbides in the microstructure according to ASTM E 562 test method
Puc. 1. I[Ipumep pacuema doau kap6uoos ¢ muxpocmpykmype no ASTM E 562

RESULTS

Table 1 shows the microstructure images used as test,
as well as image masks using four assigned colours ge-
nerated by a human (manual marking) and two neural
networks trained with different loss functions: IoU Loss
and Dice Loss.

It can be observed that the neural networks had no prob-
lems when segmenting the areas not occupied by the micro-
structure (light gray in images 1, 2 and 5). The networks
also recognise pores (black in images 4 and 5), and if in
image 5 the carbides are lighter than the matrix, and
the pore visually differs significantly from them in colour,
then in image 4 the carbides are darker than the matrix and,
similar to the pore, is spherical. Therefore, adequate pore
recognition in this image was not predictable. It can be ob-
served, however, that the network with Dice Loss mistook
a small part of the pore for a carbide part.

Artificial intelligence segmentation of carbides, occupy-
ing a large volume in images and are characterised by vari-
ous visual features, was expectedly performed with some
errors. Among them is the recognition of carbides in
the places of their absence (highlighted by a dashed circle
in the image 1 of the network with Dice Loss) and, con-
versely, the non-recognition of a part of the carbide (high-
lighted by a dashed circle in images 2, 4, and 5), which was
recorded by both networks in the same places. The analysis
of this error showed that it is related to cutting the original
images into squares of 224x224 pixels, and processing
them separately. In this case, a small edge of the carbide
appeared in another image, and the network did not recog-
nise it. Probably for the same reason, image 3 is segmented
with the largest error, since in some sliced images, large
carbide occupied most of the frame.

In general, one can note good recognition of pores by
trained neural networks and excellent segmentation in
images of spherical carbides, regardless of their colour

relative to the matrix and the presence of pores in the
structure.

Table 2 calculates the volume fraction of carbides in
the microstructure of coatings in test images. It can be ob-
served that the calculation according to ASTM showed
good results, compared to the reference calculation accord-
ing to manual marking, the difference is from 0.5 to 1.3 %
of the volume fraction of carbides. The neural network with
IoU Loss, showed a difference with the ground truth images
from 0.1 to 1.1 %, and the network with Dice Loss — from
0.1 to 0.6 % of carbides. Table 3 shows the mean square
error of calculating the fraction of carbides over the entire
test set. The calculation by the network with Dice Loss was
characterised by the smallest value of the mean square error
(0.14), and the calculation according to ASTM — by
the largest one (0.80).

However, the mean square error of calculating the frac-
tion of carbides does not fully reflect the quality of the neural
network, since it does not consider the “two-sided” errors of
the network: finding carbides where they are absent, and not
finding where they should be. Therefore, the IoU, Dice, and
MeanloU metrics, the values of which can range from 0 to 1
and tend to 1 in the case of the smallest error in the segmen-
tation of areas, were also defined for neural networks. De-
spite the less accurate determination of the volume fraction
of carbides in percent (Table 2), the network with IoU Loss is
characterised by the maximum values of all three metrics
(Table 3), which is associated with its smaller inaccuracies
(compared to the network with Dice Loss), in the segmenta-
tion of the most “problematic” image No. 3 (Table 1).

DISCUSSION

The use of artificial intelligence has a number of disad-
vantages, in particular, the necessity of collecting and pre-
paring a large amount of data for training a neural network
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Table 1. Microstructure images from test set and imaging of masks created manually and by two neural networks
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[20], as well as selecting training parameters for more accu-
rate network operation, and many of them are selected only
experimentally [21]. Thus, training a neural network and
reducing the segmentation error of carbides takes a long
time. However, in the future, the network will determine
the volume fraction of carbides in images in the split se-
conds. The calculation, using the manual method according
to ASTM, takes less time than training the neural network,
but much more than the calculation by the network after
training, and there are no prerequisites for reducing the time

of this operation. Moreover, the “step” for determining
the volume fraction according to ASTM, in the case of
a 100-points grid, is 0.5 %, and in the case of high-quality
neural network training, the accuracy will be higher. In
the case of using neural networks, the statistical error in
determining the average carbide content over the entire
coverage area can also be reduced, since fast calculation
allows increasing the number of analysed fields of vision.
The networks trained in this work are characterised by
good pore recognition, and excellent segmentation of spherical
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Table 2. The fraction of carbides in the microstructure of coatings determined by different methods, %
Tabnuua 2. Jlons kap6uoos 6 MUKpOCMPYKMype NOKPblmuil, ONpeoesieHHAs PasIudHbiMu Memooamu, %

No. of image Manual marking Calcul:notiglé;lc\flording Network with IoU Loss | Network with Dice Loss
1 15.8 16.5 15.7 15.6
2 48.4 49.0 48.5 48.5
3 36.6 355 37.7 37.2
4 28.5 28.0 27.9 28.3
5 36.2 37.5 36.6 36.7

Table 3. Mean square error, loU, Dice, and MeanloU metrics for different methods of determining the fraction of carbides
Tabnuya 3. Cpeonexsaopamuuecxas owuobxa, mempukxu loU, Dice u MeanloU 0na pasznvix memoooe onpedenenust 001u Kapouoos

ﬁztlfl::csﬁ(:,{ld:;ig:;?(;zsg Mean square error IoU Dice MeanloU
Calculation according to ASTM 0.80 - - -

Network with IoU Loss 0.37 0.958 0.979 0.952

Network with Dice Loss 0.14 0.956 0.977 0.945

carbides, regardless of the imaging method (optical/electron
microscope), and can now be successfully applied to esti-
mate the volume fraction of spherical carbides in the micro-
structure of coatings.

There are some problems with segmentation of angular
carbides, which may be related both to the lower number of
images with this type of carbides in the network training
set, and to the fact that such carbides were large (relative to
the total image area) in the tested images and therefore not
adequately estimated by networks trained on small
(224224 pixels) image fragments.

The solution to these problems can be either ex-
panding the dataset, in particular adding images with
angular carbides, and situations where the carbide takes
up most of the frame, or changing the network training
parameters: training on larger images, testing other loss
functions, varying the size of the batch size, learning
rate, etc.

CONCLUSIONS

The study shows the principal possibility of using two
neural networks based on DeepLab-v3 trained with differ-
rent loss functions (IoU Loss and Dice Loss) for semantic
segmentation of carbides in the microstructure of composite
coatings and subsequent calculation of their volume frac-
tion. The networks recognise pores, areas not related to
the microstructure and perfectly segment spherical carbides
in images, regardless of their colour relative to the matrix
and the presence of pores in the structure.

The values of the volume fraction of carbides deter-
mined by both networks differed from the reference values
by smaller amounts than the values calculated by the manu-
al point method according to ASTM. The network with loU
Loss is characterised by the maximum values of all IoU,
Dice, and MeanloU metrics compared to the network with
Dice Loss, which indicates a smaller error in the segmenta-
tion of areas.

The main problem of the networks was the segmenta-
tion of a large angular carbide, which can be solved by ex-
panding the dataset and changing the neural network train-
ing parameters.
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Annomayua: B nponecce GpopmMupoBaHHs KOMIO3UIIMOHHBIX MOKPBITHA BO3MOXKHO JaCTHYHOE PACTBOPEHHE YIIPOU-
HSIOMIMX YacTHII (Jare Bcero KapOuaoB) B MaTpHIle, IO3TOMY B pSAE CIydaeB BBIOOP peXHMMa CO3AaHUS MaTepHalia Ocy-
HIECTBIISIETCS C YUE€TOM OOBEMHOM JI0JIN TIEPBUYHBIX, HE PACTBOPUBILUXCS IIPH HAHECEHUH TTOKpPBITHiT kapOuaos. Lllupoko
UCIIOJIb3yeMble B HACTOSILEE BPEMsI METO/IbI pacueTa 0ObEeMHOM J0JM KapOHIIOB B CTPYKTYpe KOMITO3HULIMOHHBIX TOKPBI-
TUH (PyYHOH TOUYSUHBII METO/ U TPOrPaMMBI, PEATU3YIOIINE KIIACCHYECKUE METO/Ibl MAIIMHHOTO 3PEHHSI) UMEIOT OIpaHu-
YEeHUs! TI0 BO3MOKHOCTH aBTOMaTH3anuu. O)KnaaeTcsi, 4TO BHITIOJIHEHHE CEMaHTHYECKOW CETMEHTAIMH C UCIIOJIb30BaHUEM
CBEPTOYHBIX HEHPOHHBIX CETEH MOBBICUT KaK IPOW3BOJUTEIHLHOCTD IPOLECCa, TAK U TOYHOCTh ONpeNesICHHsT KapOHI0B.
B pabote npoBoauiIack MHOTOKJIACCOBasi CEMaHTHUECKas CErMEHTAIHsI, BKIIIOUAroIas KiiacCu(UKauio Ha H300pakeHHH
mop u oOxacTel, He SBIAIOMUXCI MUKPOCTPYKTYpoi. Vcmomp3oBanuchk nBe HEHpOHHBIE ceTw Ha ocHOBe DeepLab-v3,
o0ydennsle ¢ pasHpiMH pyakumsmMu oreps (IoU Loss 1 Dice Loss). MicxomHpIMu TaHHBIME OBIITH H300paXKSHUS pa3ny-
HBIX Pa3MEpOB C JIEKTPOHHOTO M ONTHYECKOTO MHUKPOCKOIOB, ¢ KapOuaaMu chepndeckoll M yriioBaTtoil popMbl TeMHEe
1 CBETJIEC MATPHILBL, B PSJIE CIIydaeB — C IMOpaMH M 00JIACTAMH, HE OTHOCSIIMMUCS K MHKPOCTPYKType. B pabore mpen-
CTaBJICHBI N300paKEHNUS-MACKH, COCTOSIINE M3 YETHIPEX KJIACCOB, CO3JAHHBIC BPYYHYIO M JBYMSI OOy4eHHBIMH HEHPOH-
HbIMH ceTssMU. [1oka3zaHo, YTO CeTH Paclo3HAIOT MOPkI, 00JIACTH, HE OTHOCSIIUECS K MUKPOCTPYKTYpPE, H OTIIMYHO CETMEH-
THUPYIOT Ha M300paKeHUsIX KapOubl chepruueckoil (JOpMBI, HE3AaBUCUMO OT MX [IBETa OTHOCHUTEIHHO MATPHUIIBI U HAJTHYHS
nop B cTpykrype. IlpoBeneHo cpaBHEeHHE H0MM KapOUIOB B MUKPOCTPYKTYPE MOKPHITHI, ONpeneneHHON ABYMsI HeHpOH-
HBIMH CETSIMH U PYYHBIM TOUSUHBIM METO/IOM.

Knrouesvle cnosa: KOMIIO3UIIMOHHBIE TIOKPBITHS; KapOH/Ibl; ONTHYECKAass MUKPOCKOIIHSI; pacTpOBasi DJICKTPOHHAsT MUK-
POCKOINS; ceMaHTHYeCKas CerMEHTalusl; HeHPOHHBIE CETH.
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