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Abstract: The problem of increasing the efficiency of mechanical treatment within modern automated production is
relevant for many branches of the processing industry. This problem requires a deep study of the physical processes occur-
ring during cutting. The urgency of the problem increases even more with the development of digital production in our
country. Today, in the presence of a wide range of products, enterprises are forced to create conditions for reducing
the technological cycle when manufacturing a particular product. To carry out the study, an experiment was conducted in
which the U8 carbon steel was used as the processed material, and the TI5K6 alloy was used as the tool material. During
the experiment, the authors observed a change in the roughness of the machined surface depending on the cutting speed.
The paper considers the possibility of assessing the quality of the surface layer during cutting based on fractal and neural
network modeling. It is identified that the fractal dimension shows the regularity of the reproduction of the machined sur-
face roughness during cutting. The calculated fractal dimension of the machined surface roughness correlates well with
the values of the machined surface roughness (correlation coefficient is 0.8—0.9). A neural network structure has been de-
veloped, which allows controlling the machined surface quality depending on the cutting conditions. The authors studied
the possibility of using neural network models to control technological systems of cutting treatment. When creating digital
twins, it is proposed to take into account factors affecting the quality of the treated surface and processing performance,
which are poorly accounted for in modeling, as well as when conducting full-scale experiments during machining. Such

factors are wear of the cutting tool, the process of plastic deformation, and cutting dynamics.

Keywords: cutting process; machined surface roughness; neural network; surface layer quality control.

For citation: Kabaldin Yu.G., Sablin P.A., Schetinin V.S. Control of the dynamic stability of metal-cutting systems in
the process of cutting based on the fractality of roughness of the machined surface. Frontier Materials & Technologies,
2023, no. 3, pp. 43-51. DOI: 10.18323/2782-4039-2023-3-65-4.

INTRODUCTION

Increasing the efficiency of mechanical processing is an
important scientific and technical problem that the world’s
leading scientists have been dealing with for many decades.
The concept of “machining efficiency” implies two very
important indicators: productivity and quality. In this re-
gard, a number of scientific schools of the Russian Federa-
tion use the indicators of mechanical processing quality as
the main criterion for assessing its efficiency. Surface
roughness is one of the main parameters determining the
quality of a machined part.

Within automated production, there is an acute problem
of increasing the efficiency of machining based on a more
in-depth study of physical processes accompanying cutting.
This problem becomes relevant especially for digital pro-
duction, the creation of which in the country is associated
with the Russian Government program “Industry 4.0”.

Digital transformation at all levels of machining enter-
prises is caused by the need both to analyse Big Data com-
ing from equipment, systems, devices using sensors and to
use this data to reduce the time for designing technological

processes and launching new products increasing produc-
tion flexibility, product quality and efficiency of production
processes.

In the work [1], for high processing rates, a method for
the formation of roughness of the machined surface is pro-
posed, taking into account the random nature of their for-
mation based on fractal representations. In the works,
the author describes that for the formation of fractals, shock
loads are necessary, which create tension—compression
waves reflecting the travelling wave of the subsequent se-
paration of the layer, the thickness of which is determined
by the properties of the billet material. Such destruction is
usually called spalling.

The fractal dimension (D) values given in the work [1],
although they are fractional, have large values and require
clarification. For example, finishing and precision machines
have D=2.6-3.0, respectively. It is known that high values
of Dr correspond to chaotic attractors [2], i. e., unstable
regimes.

The quality of processed surfaces of various parts of
machines and mechanisms is a complex operational fac-
tor that primarily affects the reliability of manufactured
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products. Surface quality indicators include such charac-
teristics as roughness, waviness, shape errors, shape po-
sition errors, etc. [4—6].

Factors influencing the roughness parameter of the ma-
chined surface [7-9] can be presented in the form of
three groups:

—factors depending on the geometry of the cutting
process;

— factors depending on the plastic deformation of
the processed material;

—factors depending on self-oscillations during pro-
cessing.

In this regard, for example, the total value of the rough-
ness height R. during cutting can be represented in the fol-
lowing form:

R, =AR} + AR} + AR | (1)

where AR;I is the height of uncut metal;

AR%m is the roughness altitude gain due to plastic defor-
mations;
AR} is the roughness altitude gain due to self-oscillations.

Thus, the roughness of machined surfaces is both
the most important characteristic of surface quality and
a reflection of the relationships between the processes oc-
curring in the cutting system.

When factors related to the cutting process geometry
arise, the process of microroughness occurrence is usually
considered as copying the motion trajectory of a cutting
tool of a certain shape on the machined surface. In this
regard, the microroughness height and the surface shape
are determined both by the cutting tool shape and by
elements of the cutting modes, which can influence
the change in the trajectory of the cutting blades relative
to the machined surface.

Plastic deformations of the surface layer of the billet [6]
during processing, as well as self-oscillatory processes,
violate the reference shape of the future part and the regular
distribution of surface irregularities increases by an order of
magnitude. As a rule, only one of the three factors has
a significant influence on the formation of surface micro-
roughness, which ultimately determines the roughness
measure. However, in some situations, all three factors
influence the process of formation of the surface layer of
the part, and it is very difficult to assess the degree of im-
pact of each factor. The roughness of the machined sur-
face in such cases becomes complex, devoid of clearly
defined patterns.

There are a number of statistical relationships linking
surface roughness with processing conditions. Currently,
there are theoretical and empirical formulas that establish
the relationship of one or another surface roughness criteri-
on with the main technological factors. Thus, for example,
in [10] the dependence of surface roughness during high-
speed and fine turning on cutting conditions is given:

R = Ct CsCvCrC(pCHBtm‘s‘n(pxq)yOLH

a B

2
vPriHBY @

where R, t, s, ¥ — in pm;

v — in m/min;

angles @, @1, o — in degrees;

HB — processed material hardness;

m, n, p, q, etc. are exponential factors at relevant condi-
tions, which are characterised by the constants C; ,C; ,C,,
etc.

For fine boring of steel billets with cutters made of hard
T15K6 and T30K4 alloys, formula (2) has the following
form:

(016 0,45 0,82

Ri=—"% o(st
y0:49,.0.

3)

As follows from equations (2) and (3), the main techno-
logical factors determining the surface roughness during
cutting are speed, feed, cutting depth, properties of the ma-
terial being processed, as well as the cutting edge angle ¢
and the radius r of the cutter tip rounding. There are other,
more complex statistical dependencies. Therefore, an im-
portant point when studying the mechanism of formation of
roughness during machining is also the study of the physics
of processes accompanying cutting in relation to the energy
transfer to the processing zone, the nonlinearity of the re-
sulting effects and the inevitable influence of dissipative
processes on the roughness height and technological system
stability as a whole.

The purpose of the study is to show that the use of ap-
proaches of nonlinear dynamics and neural network model-
ling allows controlling the cutting process at the level of
dynamic stability of metal-cutting systems.

METHODS

To carry out experimental studies, a stand was created
consisting of:

—a 1K625 model screw-cutting lathe;

—an STD.201-2 model turning dynamometer;

—an NI cDAQ-9174 National Instruments interface unit;

—aPC.

To conduct the experiment, a billet made of U8 car-
bon steel was prepared. To obtain from the dynamometer
more reliable data, this experimental assembly should be
calibrated for each material being processed. The dyna-
mometer is supplied with a standard calibration blank
(including one made of U8 steel), as well as a verifica-
tion procedure.

After calibration, according to the Walter calculator
recommendations, cutting modes were selected, which were
supplemented by others selected based on the requirements
of processing efficiency: from gentle modes, but with ob-
taining maximum surface quality, to high-performance
modes with the loss of the machined surface quality.

After processing the billets on the experimental bench,
profilograms of the surfaces were taken.

To evaluate the R, and R. parameters characterising the
roughness of the machined surface, a stand was developed
[3], which included a blank fixed in the centers of the
lathe, a TR200 profilometer connected via an interface to
a PC. The TR200 profilometer allows both obtaining the
value of any roughness parameter, in accordance with
GOST R ISO 4287-2014, and observing the nature of sur-
face irregularities.
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Further, the fractal dimension Dr of the machined sur-
face roughness was calculated using the profilogram attrac-
tors. The fractal dimension was calculated according to
known techniques, but using original software.

Employees of the Department of Mechanical Engineer-
ing Technology of Komsomolsk-on-Amur State Technical
University developed a DynAnalyzer computer program,
which allows constructing an attractor and calculating
the fractal dimension using a numerical series (according to
a profilogram or using vibroacoustic emission (VAE) sig-
nals, etc.).

The final stage of implementation of the methodology
was neural network modelling. In neural network modelling
of surface roughness, the search for the optimal artificial
neural network (ANN) structure was carried out using the
version 6.5 Matlab software, which resulted in an architec-
ture containing 7 neurons in the first hidden layer and
1 neuron in the second hidden layer. The ANN was trained
based on the obtained experimental data. The neural net-
work model was also tested on input data different from
those on which it was trained.

RESULTS

Fig. 1 shows profilograms of the processed U8 steel sur-
faces at various cutting modes.

It is known [4] that the fractal dimension characterises
the process stability and its reproduction regularity. In this
case, this is the regularity of the reproduction of irregulari-
ties on the treated surface. Moreover, the smaller the fractal
dimension, the more stable the reproduction of irregularities
during cutting will be.

Fig. 2 shows that the attractor corresponding to
the surface processed at a cutting rate of 50 m/min is the
most chaotic (Fig. 2 b). It is known that at low cutting
rates an intense build-up forming occurs, which affects
the roughness. Based on the fractal dimension of this at-
tractor, one can state that the processes occurring in
the machine tool system are irregular, and the system it-
self is unstable. As a result, the surface roughness is high.
The last fifth attractor (Fig. 2 ), on the contrary, indicates
that the oscillations occurring in the system are regular
and the system is stable.

Fig. 3 shows a model of a fractal rough surface in the
form of a Cantor set [2].

This model shows the similarity of surface irregularities
associated with repetitive processes during machining.
Based on this model, the authors proposed a fractal ap-
proach to the formation and control of the roughness of
machined surfaces during cutting for automated production
conditions.

Fig. 4 shows the dependence of the roughness R, on
the cutting rate V" carried out on the described stand when
processing U8 steel and the results of assessing the fractal
dimension of the roughness R, profilograms after their pro-
cessing. The analysis of the results shows that the greatest
differences in these types of dependencies are observed in
the region of low and high rates.

To assess the possibility of diagnosing the R, parameter
during the cutting process, a correlation analysis of the de-
pendences of R, on Dg, was carried out. The values of
the correlation coefficients turned out to be high (0.7-0.9).

During the development of a cutting process control
system, the authors created a neural network (Fig. 5) based
on diagnostics by the machined surface fractality.

DISCUSSION

As mentioned above, chip formation processes (plastic
deformation), cutting tool wear, processed material proper-
ties and cutting dynamics are the main factors determining
the roughness height during machining [11].

However, these factors in the literature [12] are consid-
ered independently of each other, i.e., they are studied and
optimised separately. In particular, when developing meth-
ods for reducing the cutting tool wear rate, as well as
the machined surface roughness, the type of chips generated
and the equipment dynamic state are not taken into account.
Studying the interdependence of various parameters of
these factors, i.e., a system approach to machining will
make it possible to create more accurately, in particular,
the models of chip formation, the machined surface rough-
ness, the cutting tool wear and the cutting process itself.

One of the promising research tools that can take into
account the interrelation and interdependence of the cutting
process output parameters is artificial intelligence ap-
proaches. The latter can be achieved based on the creation
of digital twins (DT) [13; 14]. Digital twin is a new word in
modelling equipment, technological processes and digital
production planning. DT is based on a number of mathe-
matical models reliably describing processes and relation-
ships both at an individual facility and within the entire
production equipment using the Big Data analysis. In this
regard, the development of neural network models and ma-
chine learning becomes very important.

Using the existing statistical dependencies and neural
network modelling [14; 15] allows both simulating it and
assessing the current state of the process equipment as
a whole, and, consequently, the processed surface quality.

A digital twin acts as a virtual model of a part, product,
process, technology, etc. Such a model is capable, at
the micro- and macro-level, of either describing an actual
technology object, acting as a duplicate of a finished speci-
fic product or process, or serving as a prototype of a future
technology object. At the same time, any information that
can be obtained when testing a physical object must also be
obtained based on testing a digital twin.

The influence of processing modes (V; s; ¢) and physical
and mechanical properties of the processed material (c3) on
the machined surface roughness is most covered in the li-
terature [4; 6; 9]. The influence of the cutting process dy-
namics on the machined surface roughness is the least stu-
died (equation (1)).

Currently, it is proved that self-oscillations during cut-
ting are associated with a phase shift of cutting forces [16].
The work [16] shows the relationship » between the phase
characteristic of cutting forces and chip shrinkage K,.

Fig. 6 shows the dependences r of the phase characteris-
tic of cutting forces on the microroughnesses R. height [16].
It follows from Fig. 6 that self-oscillations have the greatest
influence on the machined surface roughness when cutting
ductile materials (steel 10). With increasing cutting rate,
the influence of self-oscillations on the machined surface
roughness decreases [17; 19].
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Fig. 1. Profile records of machined surfaces (V8 steel, T15K6 cutter):
a— Veur=20 m/min, Ra 2.32; b— Veu=50 m/min, Ra 2.6;
¢ — Vew=75 m/min, Ra 1.6; d — Veur=105 m/min, Ra 1.25; e — Vewr=130 m/min, Ra 1.2
Puc. 1. IIpoghunoepammer obpabomannvix nogepxnocmeii (cmanv V8, pezey T15K6):
a — Vpes=20 m/mun, Ra 2,32; b — Vpes=50 m/mun, Ra 2,6;
¢ — Vpes=75 m/mun, Ra 1,6, d — Vpes=105 m/mun, Ra 1,25; € — Vpes=130 m/mun, Ra 1,2

The surface roughness digital twin (Fig. 6) allows, at
the stage of designing technological processes, to select
machining modes providing a given roughness depending
on both the dynamic state of the machine equipment and
the grade of the processed material and its strength proper-
ties (o5).

Increasing the number of parameters at the neural net-
work input [14; 15], changing its architecture and accu-
mulating a database about the cutting process allows stu-
dying other factors that affect the machined surface
roughness, but are difficult to study, in particular, the in-
fluence of the corner radius of the cutting blade tip,
the cutting angle, etc.

Currently, modern machine tools are considered as
a cyber-physical system (CPS), which uses sensors installed
on the cutting tool [12; 18; 20] and on other essential con-

trols of the machine, which collect data on the CPS state in
real time, after which this information is sent to the digital
twin. Constant updating of the database for the digital twin
about the cutting process allows increasing the accuracy of
modelling the machined surface roughness and the CPS
dynamic state control during cutting.

For this purpose, the authors studied the possibility of
using neural network models to control technological cut-
ting processing systems and carried out additional experi-
mental studies. In this regard, the authors took a time series
of vibroacoustic emission signals picked up during cutting
from the machine dynamic system and calculated the VAE
signal fractal dimension, which, as studies have shown,
correlates well with the fractal dimension of the machined
surface roughness. The values of the correlation coeffi-
cients turned out to be quite high (0.8-0.9).
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Fig. 2. Attractors of the machined V8 steel surfaces corresponding to cutting rates:
a — Veur=20 m/min, Ra 2.32; b — Veur=50 m/min, Ra 2.6;
¢ — V=75 m/min, Ra 1.6; d — Veur=105 m/min, Ra 1.25;
e — Vew=130 m/min, Ra 1.2
Puc. 2. Ammpaxmoper 06pabomannvix nosepxnocmeti cmanu Y8, coomsemcemayrouue CKOpOCMAM pe3anus.
a — Vpes=20 m/mun, Ra 2,32; b — Vpes=50 m/mun, Ra 2,6;
¢ — Vpes=75 m/mun, Ra 1,6, d — Vpes=105 m/mun, Ra 1,25;
e — Vpes=130 m/mun, Ra 1,2
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Fig. 3. The model of Cantor profile of surface roughness
Puc. 3. Mooenv kKanmoposcko2o npOGUAsL uepoxo8amocmu nOBePXHOCMU
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Fig. 5. The structure of artificial neural network for assessing the fractality
of the machined surface based on the cutting conditions
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Fig. 6. The dependence r of phase characteristic of cutting forces on the machined surface roughness
(1 — 80 m/min; 2 — 30 m/min) [16]

CONCLUSIONS

1. A correlation was identified between the machined
surface roughness and the fractal dimension Dg,. The corre-
lation coefficient was 0.8-0.9.

2. A system based on artificial intelligence is proposed
that allows taking into account a wide range of input pa-
rameters affecting the machined surface roughness.

3. The proposed intelligent system is capable of self-
learning, which allows increasing the number of input pa-
rameters and create a database of virtual models (digital
twins).
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Annomayusn: Ilpobnema noBbimeHns: 3PPEKTHBHOCTH MEXaHNYECKOH 00pabOTKN B YCIIOBUSX COBPEMEHHOIO aBTOMa-
TH3HPOBAHHOTO IPOU3BOJCTBA SBISACTCS AKTYaJbHOH Uil MHOTHX OTpaciieidl mepepabarhlBaiolicii MPOMBIIUICHHOCTH.
Jlannast npo6iema TpebyeT IIyOOoKoro u3y4eHus (PU3NIECKUX MPOLECCOB, MPOMCXOAAIINX NPH pe3aHud. Ee akTyaabHOCTh
ee Gosiee BO3PACTALT ¢ PAa3BUTHEM LU(PPOBOTro MPOU3BOJACTBA B Hamel crpaHe. CeroqHs NpH HATMYHU ITHPOKOH HOMEH-
KJIaTypbl U3LCIIHI TPEANPUSITHS BBIHYKIICHBI CO3IaBaTh YCIOBUS JUIS COKPAIICHHUS TEXHOIOTHYECKOTO IIMKIIA NP TPOH3-
BOJICTBE TOTO HJIM MHOTO HM3AeNnus. JJis mpoBeneHUs MCCIIeNOBaHuUs ObLT IIOCTABIICH SKCIICPHUMEHT, B KOTOPOM B Ka4eCTBE
00pabarbIBaeMOro MaTepHaa HCIIOJIb30Balach YIIEPOAUCTas CTalb Y8, a B KaueCTBE MHCTPYMEHTAIFHOTO MaTepHuaia —
T15K6. B xome mpoBeneHHs SKCIEpUMEHTa HAOMIOAIM 3a M3MEHEHHEM MIEpOXOBATOCTH OOpaOOTAaHHOW MOBEPXHOCTH
B 3aBHCHUMOCTH OT CKOPOCTH pe3aHus. B paboTe paccMoTpeHa BO3MOXHOCTD OLIEHKH Ka4eCTBa MOBEPXHOCTHOTO CIIOS TIPH
pe3aHUU Ha OCHOBE (hPAKTATBHOTO M HEHPOHHOCETEBOrO MojenupoBaHua. OOHApYKEeHO, YTO (paKTaibHAs Pa3MEPHOCTb
MOKa3bIBAET PETYISPHOCTh BOCIIPOU3BECHHUSI HEPOBHOCTEH Ha 00paOOTaHHON MOBEPXHOCTH MpPHU pe3aHuu. PaccunraHHas
(pakranpHas pa3MEpHOCTH MIEPOXOBATOCTU 00pabOTAHHON MOBEPXHOCTH XOPOIIO KOPPEIUPYET CO 3HAYEHUAMH ILEPOXO-
Baroctd oOpaboTaHHOH moBepxHOCTH (ko3 duuuent koppeminuu 0,8-0,9). Paspaborana crpykTypa HEHpOHHOH ceTH,
TIO3BOJISIIOIIAsT YIIPABJISATh Ka4eCTBOM 00pabOTaHHOM IMOBEPXHOCTH B 3aBUCHMOCTH OT YCJOBHUH pe3anus. V3zydena Bo3-
MOKHOCTB HCIOJIb30BaHUsI HEHPOHHOCETEBBIX MOJENIEH Ul yNpaBIeHHs TEXHOIOTMYECKHMHU CHCTEMaMu 00paboTKH pe-
3aHueM. [IpeayoKeHo IpH CO3AaHUU HU(PPOBBIX ABOWHHUKOB YUUTHIBATh (PAKTOPHI, BIUSIOLINE HA KAYECTBO 00pabOTaHHOM
MIOBEPXHOCTH M MPOM3BOIUTEILHOCTh 00pPaOOTKH, KOTOpBIE €1ab0 IOUIAI0TCS y4eTy NPH MOJEIMPOBAaHMH, a TaKXKe MpU
NPOBENICHUH HATYPHBIX SKCIIEPHMEHTOB B X0I€ MEXaHWIeCKol 00paboTku. TakiuMu (akTopaMul SABISIOTCS H3HOC PEXKyILe-
r0 HHCTPYMEHTA, POLecC IUIACTHYECKO JeopMaiuy 1 AUHAMHKA PEe3aHHs.

Kntouesvie cnosa: npouece pe3aHus; IEPOXOBaTOCTh 00PabOTaHHON OBEPXHOCTH; HEHPOHHAS CETb; YIPABICHUE Ka-
4ECTBOM ITOBEPXHOCTHOT'O CIIOSL.

Jna yumupoeanus: Kabannuu 0.1, Cabmun [1.A., lletnann B.C. Ynpasnenne quHaMHYeCKOW YCTOHYUBOCTHIO Me-
TAIJIOPEXKYIUX CUCTEM B MPOLIECCE pe3aHus Mo (GppaKkTalbHOCTH IIEPOXOBATOCTH 00paboTaHHO# moBepxHocTH // Frontier
Materials & Technologies. 2023. Ne 3. C. 43-51. DOI: 10.18323/2782-4039-2023-3-65-4.
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