Исследование влияния содержания ZnCl₂ во флюсе для пайки Al-Mg сплавов на его технологические свойства

© 2020

Степанов Максим Александрович, аспирант

Московский авиационный институт (национальный исследовательский университет), Москва (Россия)

*E-mail: stepanov_222@mail.ru

ORCID: https://orcid.org/0000-0002-4831-1487

Аннотация: Алюминиево-магниевые сплавы – пластичные сплавы, обладающие хорошей свариваемостью, коррозийной стойкостью и высоким уровнем усталостной прочности. В алюминиево-магниевых сплавах содержится до 6 % магния. Чем выше его содержание, тем прочнее сплав. Однако данные сплавы с высоким содержанием магния с трудом поддаются пайке, поэтому стоит задача определить составы флюсов для высокотемпературной пайки данных сплавов, обеспечивающие высокое качество паяных соединений. В работе было исследовано влияние активатора ZnCl₂ на технологические свойства флюса. Проведено испытание составов флюса с содержанием ZnCl₂ от 0 до 12 %. Испытания проводились на сплаве АМг2 с применением припоя АК12. Оценено влияние содержания $ZnCl_2$ на площадь растекания припоя, равномерность растекания и состояние поверхности растекшейся капли припоя. Выявлено значительное увеличение площади растекания припоя при введении во флюс активатора ZnCl₂, введение 4 % хлорида цинка позволило увеличить площадь растекания капли припоя на 50-55 %. Рассмотрены образцы, паянные флюсом, который не содержит ZnCl₂, и флюсами с добавкой хлорида цинка. Содержание активатора во флюсе увеличивалось на 4 % до достижения 12 %. Выявлено сильное взаимодействие флюса с основным металлом с выделением газообразных продуктов, приводящих к порообразованию. В результате работы установлено, что ZnCl₂ в значительной степени влияет на свойства флюса, позволяя увеличить площадь растекания припоя, однако в результате реакций с образованием газообразных продуктов может приводить к пористости паяного соединения.

Ключевые слова: флюс; хлорид цинка; активатор; пайка; разрушение оксидной пленки; алюминиево-магниевые сплавы.

Для цитирования: Степанов М.А. Исследование влияния содержания ZnCl₂ во флюсе для пайки Al-Mg сплавов на его технологические свойства // Вектор науки Тольяттинского государственного университета. 2020. № 4. С. 43–50. DOI: 10.18323/2073-5073-2020-4-43-50.

введение

Несмотря на широкое распространение пайки алюминия с применением флюсов, остаются определенные проблемы с выбором флюса для получения качественного соединения с плотной структурой с минимальным количеством пор и включений, что в итоге определяет механические свойства паяной конструкции.

Касательно процесса разрушения оксидных пленок хлоридными флюсами существует несколько точек зрения. Согласно наиболее распространенной из них, в результате нагрева, из-за разности КТР оксидной пленки и алюминия, в пленке образуются трещины, в которые проникает флюс, он взаимодействует с алюминием с образованием хлорида алюминия, и в процессе оксидная пленка дробится и удаляется из соединения [1–3]. В итоге происходит разрушение оксидной пленки.

Альтернативная точка зрения заключается в том, что во время флюсовой пайки протекают процессы электрохимической коррозии [4–6]. Чтобы произошло растворение оксидной пленки, катодная кривая должна пересекать анодную кривую в зоне активного состояния или в зоне деполяризации. Флюс должен уменьшать зону пассивного состояния металла на анодной поляризационной кривой, смещая зону депассивации.

В случае алюминиево-магниевых сплавов кроме оксида Al_2O_3 образуется также оксид MgO. Толщина оксидной пленки при комнатной температуре увеличивается с течением времени. Оксидные пленки относятся к группе плотных пленок (Al₂O₃, γ =4,00; MgO, γ =3,65), которые защищают металл от дальнейшего окисления и взаимодействия его с окружающей средой [7–9].

При содержании в сплаве Mg менее 0,02 % в оксидной пленке обнаруживается шпинель MgAl₂O₄ и γ -Al₂O₃, при 0,01–0,1 % Mg оксидная пленка состоит из MgAl₂O₄ и MgO. В оксидной пленке преобладает MgO при содержании магния в алюминиевых сплавах более 1 % [7; 10; 11].

Пленка оксида магния является еще более тугоплавкой, чем оксидная пленка алюминия $T_{nn}^{MgO}=2800$ °C. Оксидная пленка активно адсорбирует влагу. При нагреве происходит диссоциация пара с выделением водорода.

Повышение содержания магния более 1 % значительно затрудняет пайку [7; 11; 12]. На рис. 1 показаны образцы, паянные на различных сплавах при одинаковых условиях. Видно, что с повышением содержания магния значительно уменьшается площадь растекания припоя.

В работах [13–15] было исследовано изменение строения оксидной пленки на сплаве 5083 (аналог Амг 4,5) при температуре пайки 500 °С. Результаты показали, что исходная пленка γ -Al₂O₃ на поверхности сплава 5083 была преобразована в сложную оксидную пленку, состоящую из MgO, MgAl₂O₄, и свободные атомы Al после нагревания. Толщина этой оксидной пленки,

Рис. 1. Изменение площади растекания при пайке разных сплавов в одинаковых условиях: $a - A \square 31; b - AM22; c - AM23$ **Fig. 1.** Change in spreading area during brazing of different alloys under the same conditions: a - AD31; b - AMg2; c - AMg3

которую можно разделить на два отдельных слоя, составляет приблизительно 130 нм. Внешний слой состоит в основном из аморфной фазы MgO, в то время как внутренний слой – на основе MgO, с несколькими свободными атомами Al и небольшим количеством частиц MgAl₂O₄, распределенных в нем [14–16].

В работах [3; 14; 17] для повышения активности флюсов предлагается вводить хлориды цинка, олова и кадмия. Цель работы – исследование влияния хлорида цинка на свойства флюса.

МЕТОДИКА ПРОВЕДЕНИЯ ИССЛЕДОВАНИЙ

В качестве материала для исследования выбраны пластинки из сплава АМг2 и припой АК12, химический состав сплава АМг2 представлен в таблице 1.

Для пайки использовался хлоридный флюс системы KCl-LiCl-NaCl-KF-AlF3-ZnCl₂.

Таблица 1. Химический состав материала AMг2 Table 1. Chemical composition of the AMg2 material

Содержание элементов, масс. %									
Al	Mg	Fe	Mn	Ti	Cu	Si	Zn	Примес	И
95,3–98	1,8–2,8	До 0,4	0,2–0,6	До 0,1	До 0,1	До 0,4	До 0,2	Прочие, каждая 0,05	Всего 0,15

В качестве основы флюса выбрана система солей NaCl-LiCl-KCl-KF-ZnCl₂, данная система позволяет обеспечить интервал активности флюса в интервале 460–640 °C.

Перед пайкой выполнялась механическая обработка и проводилось травление в растворе ортофосфорной кислоты с последующей отмывкой в воде. На образце располагали 0,04 г флюса в виде порошка и 0,05 г припоя.

На следующем этапе собранный образец помещался в печь, разогретую до 580 °C, и выдерживался в течение 5 мин. По истечении времени пайки образец извлекался из печи, охлаждался в течение 1 мин и отмывался от остатков флюса.

Растекаемость оценивалась по фотографиям образцов, выполненным на микроскопе МЕТАМ Р-1, образцы располагались рядом с линейкой для определения соотношения размеров.

Изображения обрабатывались в программе *Scopephoto* для выделения границ капли припоя. Оценивались три критерия:

1) площадь растекшейся капли припоя;

2) состояние поверхности капли припоя;

3) равномерность растекания капли припоя.

Равномерность растекания и состояние поверхности оценивались по 5-балльной шкале, где 1 балл – неудовлетворительно, 5 баллов – отлично.

Равномерность растекания капли припоя оценивалась сравнением фактического периметра (P_{Φ}) капли припоя с идеальным периметром (P_{O}) при полученной площади капли припоя (окружность, площадь которой равна площади капли). Р_О рассчитывалось по формуле

$$P_{\rm O} = 2\pi \sqrt{\frac{S}{\pi}} ,$$

где $P_{\rm O}$ – периметр окружности, площадь которой равна площади растекшейся капли припоя;

S – площадь капли припоя.

Далее рассчитывалось соотношение

$$\frac{P_O}{P_\Phi} = k \leq 1$$

где P_{Φ} – фактический периметр растекшейся капли припоя.

Оценка равномерности растекания припоя по коэффициенту *k* представлена в таблице 2.

Состояние поверхности оценивалось по критериям, приведенным в таблице 3.

Для каждого образца флюса проводилось по 3 испытания. Было исследовано 4 образца флюса с изменением содержания ZnCl₂ от 0 до 12 % с шагом 4 %.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

Результаты эксперимента представлены в таблице 4. Фотографии образцов приведены на рис. 2 и рис. 3.

На рис. 2 а приведен образец, паянный флюсом, который не содержит активатора ZnCl₂. Образцы, испытанные этим флюсом, показали наихудший результат с точки зрения площади растекания припоя. Наблюдаются дефекты в области расположения припоя. Это показывает, что флюс не смог протечь под пруток припоя и удалить оксидную пленку, что говорит о его низкой способности протекать в зазоры.

На рис. 2 b показан образец, испытанный флюсом с добавкой 4 % ZnCl₂. При повышении содержания хлорида цинка до 4 % происходит значительное увеличение площади растекания припоя. Площадь растекания увеличивается на 50–55 %, значительно улучшается состояние поверхности в соответствии с критериями таблицы 3.

На рис. 3 а образец испытан флюсом с добавкой 8 % ZnCl₂. При повышении содержания хлорида цинка до 8 % площадь растекания капли припоя увеличилась на 90–95% относительно образцов с флюсом без добавления активатора. Поверхность растекшейся капли припоя имеет минимум дефектов.

Таблица 2. Оценка равномерности растекания припоя Table 2. Evaluation of solder spreading uniformity

Оценка	1	2	3	4	5
Коэффициент k	Менее 0,75	0,75–0,8	0,8–0,85	0,85–0,9	Более 0,9

Таблица 3. Критерии оценки состояния поверхности Table 3. Criteria for assessing the surface state

Критерий	Вид поверхности
1. Неполное растекание припоя, остатки флюса	
2. Наличие зон, в которых не растекся припой, остатки флюса	A A A A A A A A A A A A A A A A A A A
3. Небольшие повреждения поверхности, незначительные остатки флюса	
4. Незначительные повреждения поверхности	
5. Отсутствие повреждений поверхности	

Таблица 4. Результаты испытаний образцов флюса Table 4. The results of flux samples testing

Содержание ZnCl ₂ , %	№ образца	Площадь капли припоя	Состояние поверхности	Равномерность растекания
	1	246,6	3	4
0	2	248	4	5
	3	244,9	4	5
	1	347,9	4	4
4	2	327,9	5	4
	3	454,9	5	5
	1	476,2	5	4
8	2	473,9	4	5
	3	478,0	5	4
	1	519,1	4	5
12	2	518,5	4	3
	3	558,3	3	4

Рис. 2. Образцы, паянные флюсом с добавкой ZnCl₂: *a* - 0 %; *b* - 4 % Fig. 2. Samples brazed with ZnCl2 flux: *a* - 0 %; *b* - 4 %;

На рис. 3 b образец испытан флюсом с содержанием $ZnCl_2$ 12 %. Площадь растекания припоя в данном случае увеличилась на 115–120 %. При превышении 10 % содержания хлорида цинка отмечается ухудшение состояния поверхности капли припоя и незначительное снижение равномерности растекания припоя. На по-

верхности капли припоя заметно образование небольших кратеров, что говорит о значительном растворении подложки в результате избытка хлорида цинка.

На рис. 4 приведена зависимость площади растекания капли припоя от содержания хлорида цинка. График построен по среднему значению всех испытаний.

Рис. 3. Образцы, паянные флюсом с добавкой ZnCl₂: a - 5 %; b - 12 % **Fig. 3.** Samples brazed with ZnCl2 flux: a - 5 %; b - 12 %

Puc. 4. График зависимости площади растекания припоя от содержания $ZnCl_2$ во флюсе **Fig. 4.** The graph of the dependence of the solder spreading area on the $ZnCl_2$ content in the flux

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

По результатам эксперимента можно говорить о значительном влиянии хлорида цинка на технологические свойства флюса. Из таблицы 3 видно, что введение во флюс активатора $ZnCl_2$ положительно влияет на площадь растекания припоя. Введение 4 % $ZnCl_2$ во флюс привело к увеличению площади растекания капли припоя на 50–55 %. При повышении содержания хлорида цинка до 12 % площадь растекания увеличилась на 115–120 %.

В работах [1; 14; 17] показано, что хлорид цинка взаимодействует с алюминием с образованием газообразного AlCl₃: 2Al+3ZnCl₂=2AlCl₃+3Zn, что впоследст-

вии приводит к образованию несплошностей при пайке. Наличие хлорида цинка во флюсе приводит к значительному порообразованию в паяном шве [18].

Активность взаимодействия хлорида цинка с алюминием можно уменьшить введением во флюс добавок. В работах [1; 5; 19] для этого предлагается вводить фториды KF или NaF, в [1; 20] – заменить хлорид цинка на CdCl₂ или SnCl₂, которые в меньшей степени взаимодействуют с алюминием. Добавление SnCl₂ во флюс совместно с ZnCl₂ позволяет значительно снизить активность взаимодействия хлорида цинка с алюминием, это приводит к уменьшению образования газообразных продуктов реакции, и пористость в паяном шве снижается [1; 20].

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

1. Полученные в работе результаты экспериментов показывают значительное влияние наличия $ZnCl_2$ во флюсе на площадь растекания припоя. Введение 4 % хлорида цинка позволяет увеличить площадь растекания на 50–55 %.

2. При содержании ZnCl₂ 12 % заметны поверхностные дефекты на поверхности капли припоя, проявляющиеся в результате реакции хлорида цинка с алюминием и образования газообразных продуктов реакций.

СПИСОК ЛИТЕРАТУРЫ

- Sharma A., Lee S.H., Ban H.O., Shim Y.S., Jung J.-P. Effect of Various Factors on the Brazed Joint Properties in Al Brazing Technology // Journal of Welding and Joining. 2016. Vol. 34. № 2. P. 30–35.
- Xue S.-B., Zhang L., Han Z.-J., Huang X. Reaction mechanism between oxide film on surface of Al-Li alloy and CsF-AlF₃ flux // Transactions of Nonferrous Metals Society of China. 2008. Vol. 18. № 1. P. 121– 125.
- Sekulic D.P. Brazing of Aluminum Alloys, Aluminum Science and Technology // ASM Handbook. Vol. 22A: Fundamentals of Modeling for metals processing. Novelty: ASM International, 2018. P. 763–782.
- Xiao B., Wang D., Cheng F., Wang Y. Development of ZrF4-containing CsF–AlF3 flux for brazing 5052 aluminium alloy with Zn–Al filler metal // Materials & Design. 2016. Vol. 90. P. 610–617.
- 5. Ferraris S., Perero S., Ubertalli G. Surface Activation and Characterization of Aluminum Alloys for Brazing Optimization // Coatings. 2019. Vol. 9. № 7. Article number 459. DOI: 10.3390/coatings9070459.
- Yao Z., Xue S.B., Zhang J.X. Effect of Various Nanoparticles (GaF3, ZnF2, Zn(BF4)2 and Ga2O3) Additions on the Activity of CsF-RbF-AlF3 Flux and Mechanical Behavior of Al/Steel Brazed Joints // Crystals. 2020. Vol. 10. № 8. Article number 683.
- 7. Lee S.-J., Jung D.-H., Jung J.-P. Brazing and principle of aluminum // Journal of Microelectronics and Packaging Society. 2017. Vol. 24. № 4. P. 1–7.
- Zahr J., Oswald S., Turpe M., Ullrich H.J., Fussel U. Characterisation oxide and hydroxide layers on technical aluminum materials using XPS // Vacuum. 2012. Vol. 86. № 9. P. 1216–1219.
- Zhu Z., Chen Y., LuoA.A., Liu L. First conductive atomic force microscopy investigation on the oxide-film removal mechanism by chloride fluxes in aluminum brazing // Scripta Materialia. 2017. Vol. 138. P. 12–16.
- 10. Panda E., Jeurgens L.P.H., Mittemeijer E.J. Interface thermodynamics of ultra-thin, amorphous oxide overgrowths on AlMg alloys // Acta Materialia. 2010. Vol. 58. № 5. P. 1770–1781.
- 11. Panda E., Jeurgens L.P.H., Richter G., Mittemeijer E.J. The amorphous to crystalline transition of ultrathin (Al, Mg)-oxide films grown by thermal oxidation of AlMg alloys: a high-resolution transmission electron microscopy investigation // Journal of Materials Research. 2010. Vol. 25. № 5. P. 871–879.
- Zahi S., Daud A.R. Phase diagram, thermodynamics and microstructure of Al-Mg system // Proceedings of the IEEE/CPMT International Electronic Manufacturing

Technology (IEMT) Symposium. 2010. Article number 574613.

- Xiao B., Wang D., Cheng F., Wang Y. Oxide film on 5052 aluminium alloy: Its structure and removal mechanism by activated CsF–AlF3 flux in brazing // Applied Surface Science. 2015. Vol. 337. P. 208–215.
- 14. Cheng F.J., Yao J.F., Yang Z.W., Wang Y., Xiao B. Structure and composition of oxide film on 5083 alloy at brazing temperature // Materials Science and Technology (United Kingdom). 2015. Vol. 31. № 11. P. 1282–1287.
- 15. Cheng F., Zhao H., Wang Y., Xiao B. Evolution of surface oxide film of typical aluminum alloy during medium-temperature brazing process // Transactions of Tianjin University. 2014. Vol. 20. № 1. P. 54–59.
- 16. Cheng F.-J., Qi S.-M., Yang Z.-W., Yao J.-F., Zhao H. Self-brazing Mechanism of Aluminum Alloy at Medium Temperature // Cailiao Gongcheng/Journal of Materials Engineering. 2018. Vol. 46. № 1. P. 31–36.
- 17. Dai W., Xue S.-B., Lou J.-Y., Lou Y.-B., Wang S.-Q. Torch brazing 3003 aluminum alloy with Zn–Al filler metal // Transactions of Nonferrous Metals Society of China. 2012. Vol. 22. № 1. P. 30–35.
- 18. Xiao B., Wang D., Cheng F., Wang Y. Development of ZrF₄-containing CsF–AlF₃ flux for brazing 5052 aluminium alloy with Zn–Al filler metal // Materials and Design. 2016. Vol. 90. P. 610–617.
- 19. Hu J., Zhang Q. Investigation of pseudo-ternary system AlF₃-KF-KC1 // Thermochimica Acta. 2003. Vol. 404. № 1-2. P. 3-7.
- Khorunov V.F., Sabadash O.M. 9 Brazing of aluminium and aluminium to steel // Advances in Brazing. Science, Technology and Applications. Cambridge: Woodhead Publishing, 2013. P. 249–279.

REFERENCES

- Sharma A., Lee S.H., Ban H.O., Shim Y.S., Jung J.-P. Effect of Various Factors on the Brazed Joint Properties in Al Brazing Technology. *Journal of Welding and Joining*, 2016, vol. 34, no. 2, pp. 30–35.
- Xue S.-B., Zhang L., Han Z.-J., Huang X. Reaction mechanism between oxide film on surface of Al-Li alloy and CsF-AlF₃ flux. *Transactions of Nonferrous Metals Society of China*, 2008, vol. 18, no. 1, pp. 121– 125.
- 3. Sekulic D.P. Brazing of Aluminum Alloys, Aluminum Science and Technology. *ASM Handbook. Vol. 22A: Fundamentals of Modeling for metals processing.* Novelty, ASM International Publ., 2018, pp. 763–782.
- 4. Xiao B., Wang D., Cheng F., Wang Y. Development of ZrF4-containing CsF–AlF₃ flux for brazing 5052 aluminium alloy with Zn–Al filler metal. *Materials and Design*, 2016, vol. 90, pp. 610–617.
- 5. Ferraris S., Perero S., Ubertalli G. Surface Activation and Characterization of Aluminum Alloys for Brazing Optimization. *Coatings*, 2019, vol. 9, no. 7, article number 459. DOI: 10.3390/coatings9070459.
- Yao Z., Xue S.B., Zhang J.X. Effect of Various Nanoparticles (GaF3, ZnF2, Zn(BF4)2 and Ga2O3) Additions on the Activity of CsF-RbF-AlF3 Flux and Mechanical Behavior of Al/Steel Brazed Joints. *Crystals*, 2020, vol. 10, no. 8, article number 683.

- Lee S.-J., Jung D.-H., Jung J.-P. Brazing and principle of aluminum. *Journal of Microelectronics and Packaging Society*, 2017, vol. 24, no. 4, pp. 1–7.
- Zahr J., Oswald S., Turpe M., Ullrich H.J., Fussel U. Characterisation oxide and hydroxide layers on technical aluminum materials using XPS. *Vacuum*, 2012, vol. 86, no. 9, pp. 1216–1219.
- Zhu Z., Chen Y., Luo A.A., Liu L. First conductive atomic force microscopy investigation on the oxidefilm removal mechanism by chloride fluxes in aluminum brazing. *Scripta Materialia*, 2017, vol. 138, pp. 12–16.
- Panda E., Jeurgens L.P.H., Mittemeijer E.J. Interface thermodynamics of ultra-thin, amorphous oxide overgrowths on AlMg alloys. *Acta Materialia*, 2010, vol. 58, no. 5, pp. 1770–1781.
- 11. Panda E., Jeurgens L.P.H., Richter G., Mittemeijer E.J. The amorphous to crystalline transition of ultrathin (Al, Mg)-oxide films grown by thermal oxidation of AlMg alloys: a high-resolution transmission electron microscopy investigation. *Journal of Materials Research*, 2010, vol. 25, no. 5, pp. 871–879.
- 12. Zahi S., Daud A.R. Phase diagram, thermodynamics and microstructure of Al-Mg system. *Proceedings of the IEEE/CPMT International Electronic Manufacturing Technology (IEMT) Symposium*, 2010, article number 574613.
- 13. Xiao B., Wang D., Cheng F., Wang Y. Oxide film on 5052 aluminium alloy: Its structure and removal mecha-

nism by activated CsF–AlF₃ flux in brazing. *Applied Surface Science*, 2015, vol. 337, pp. 208–215.

- 14. Cheng F.J., Yao J.F., Yang Z.W., Wang Y., Xiao B. Structure and composition of oxide film on 5083 alloy at brazing temperature. *Materials Science and Technology (United Kingdom)*, 2015, vol. 31, no. 11, pp. 1282–1287.
- Cheng F., Zhao H., Wang Y., Xiao B. Evolution of surface oxide film of typical aluminum alloy during medium-temperature brazing process. *Transactions of Tianjin University*, 2014, vol. 20, no. 1, pp. 54–59.
- Cheng F.-J., Qi S.-M., Yang Z.-W., Yao J.-F., Zhao H. Self-brazing Mechanism of Aluminum Alloy at Medium Temperature. *Cailiao Gongcheng/Journal of Materials Engineering*, 2018, vol. 46, no. 1, pp. 31–36.
- Dai W., Xue S.-B., Lou J.-Y., Lou Y.-B., Wang S.-Q. Torch brazing 3003 aluminum alloy with Zn–Al filler metal. *Transactions of Nonferrous Metals Society of China*, 2012, vol. 22, no. 1, pp. 30–35.
- 18. Xiao B., Wang D., Cheng F., Wang Y. Development of ZrF₄-containing CsF–AlF₃ flux for brazing 5052 aluminium alloy with Zn–Al filler metal. *Materials and Design*, 2016, vol. 90, pp. 610–617.
- 19. Hu J., Zhang Q. Investigation of pseudo-ternary system AlF₃–KF–KCl. *Thermochimica Acta*, 2003, vol. 404, no. 1-2, pp. 3–7.
- Khorunov V.F., Sabadash O.M. 9 Brazing of aluminium and aluminium to steel. *Advances in Brazing. Science, Technology and Applications.* Cambridge, Woodhead Publ., 2013, pp. 249–279.

The study of the influence of ZnCl₂ content in a flux for brazing of Al-Mg alloys on its technological properties

© 2020

Maksim A. Stepanov, postgraduate student Moscow Aviation Institute (National Research University), Moscow (Russia)

*E-mail: stepanov_222@mail.ru

ORCID: https://orcid.org/0000-0002-4831-1487

Abstract: Aluminum-magnesium alloys are ductile alloys with good weldability, corrosion resistance, and a high fatigue strength level. Aluminum-magnesium alloys contain up to 6 % magnesium. The higher its content, the stronger is the alloy. However, these alloys with high magnesium content are difficult to solder. Therefore, the task is to create flux compositions for high-temperature brazing of these alloys providing high-quality brazed joints. The work investigated the influence of the ZnCl₂ activator on the technological properties of the flux. The authors tested the flux compositions with ZnCl₂ content of 0 to 12 %. The tests were carried out on the AMg2 alloy using the AK12 solder. The authors evaluated the influence of ZnCl₂ content on the spreading area of solder, the spreading uniformity, and the surface condition. The study revealed a significant increase in the spreading area of solder when introducing the ZnCl₂ activator into the flux and the introduction of 4 % zinc chloride made it possible to increase the spreading zone of a solder drop by 50–55 %. The authors considered the samples brazed with a flux that did not contain ZnCl₂ and using flux with the addition of 4 % ZnCl₂. Activator content in the flux increased by 4 % before reaching 12 %. The study identified the strong interaction between the flux and the base metal with the release of gaseous products leading to the pore formation. As a result of the work, it was revealed that ZnCl₂ significantly affects the flux properties, allowing increasing the solder spreading area; however, in the result of reactions with the formation of gaseous products, it can lead to the porosity of the brazed joint. *Keywords:* flux; zinc chloride; activator; brazing; oxidation film destruction; aluminum-magnesium alloys.

For citation: Stepanov M.A. The study of the influence of ZnCl₂ content in a flux for brazing of Al-Mg alloys on its technological properties. *Vektor nauki Tolyattinskogo gosudarstvennogo universiteta*, 2020, no. 4, pp. 43–50. DOI: 10.18323/2073-5073-2020-4-43-50.