УДК 621.9.06 doi: 10.18323/2073-5073-2016-1-35-41

МЕТОДИКА АНАЛИЗА СИЛОВЫХ ДЕФОРМАЦИЙ НЕСУЩИХ СИСТЕМ СТАНКОВ ПРИ КОНТАКТНЫХ ВЗАИМОДЕЙСТВИЯХ ПОВЕРХНОСТЕЙ

© 2016

М.А. Рубцов, аспирант кафедры «Сервис технических и технологических систем» Поволжский государственный университет сервиса, Тольятти (Россия)

Ключевые слова: горизонтальный координатно-расточной станок; силовые деформации несущих систем; прецизионный горизонтальный координатно-расточной станок (ГКРС); контактные взаимодействия поверхностей.

Аннотация: Учитывая высокие требования, предъявляемые к условиям, в которых должны работать прецизионные станки, исследования силовых деформаций несущих систем являются весьма актуальной задачей. В статье приведена методика анализа силовых деформаций несущих систем станков при перемещении массивных подвижных элементов технологических систем при контактных взаимодействиях поверхностей с помощью метода конечных элементов. Объектом исследования является прецизионный горизонтальный координатно-расточной станок (ГКРС) модели 2А459СФ4. Была разработана объемная модель станка с учетом соединения жестко скрепленных деталей между собой и подвижных частей станка. Исследования проводились с помощью программного комплекса ANSYS Workbench 14.5. В статье представлены принятые допущения, которые учитывались при расчете силовых деформаций при контактных взаимодействиях. Приведено подробное описание настраиваемых параметров контактных взаимодействий в расчетной модели в программном комплексе ANSYS Workbench 14.5. Был произведен статический расчет силовых деформаций несущей системы прецизионного ГКРС при контактных взаимодействиях с последующим занесением данных расчета в таблицы. При расчете происходило дискретное перемещение стойки станка. Расчет производился при трех положениях стойки станка: максимально удаленном от обрабатываемой заготовки, центральном положении и при обработке заготовки. Это осуществлялось с целью рассмотрения влияния положения стойки на общие силовые деформации станины станка и на силовые деформации в стыках при контактных взаимодействиях. Представлен сравнительный анализ смещения контрольных точек при теоретическом и экспериментальном исследованиях. Была доказана адекватность данной методики анализа силовых деформаций несущих систем станков при контактных взаимодействиях поверхностей.

Современные металлообрабатывающие станки имеют сложные конструктивные исполнения технологических систем. Факторов, которые влияют на точность обработки станка, множество [1; 2]. Поэтому исследования и расчет силовых деформаций несущих систем являются весьма сложной задачей, в связи с этим программы инженерного анализа, основанные на применении метода конечных элементов, весьма упрощают задачу.

Известно, что расчет статических и динамических характеристик технологических систем станков с использованием метода конечных элементов позволяет достаточно точно получить удовлетворительные результаты, которые могут быть использованы при проектировании нового технологического оборудования. Однако возникает необходимость учета контактных взаимодействий между элементами технологических систем [3–8]. Это требует разработки уточненной методики расчета таких систем.

В работе представлена методика анализа силовых деформаций несущей системы прецизионного ГКРС модели 2А459СФ4 при контактных взаимодействиях поверхностей. Была разработана трехмерная модель в программе «Компас 3D V14» (рис. 1) с учетом определенных особенностей, учитывающих конструктивное исполнение станка, а также условия его эксплуатации. Далее были выполнены аналитические исследования в системе программ ANSYS Workbench 14.5.

Модель станка имеет следующие особенности и допущения:

 в расчет приняты базовые элементы технологической системы станка, вес которых имеет распределенный характер и оказывает существенное влияние на снижение его точности. В расчет были приняты 128 единиц конструкции, из которых 87 – оригинальные;

 – элементы технологической системы исполнены в соответствии с их реальными геометрией и материалом, из которого они выполнены;

Рис. 1. Трехмерная модель прецизионного ГКРС модели 2A459СФ4, импортированная в программу ANSYS Workbench 14.5: 1 – станина стола; 2 – станина стойки; 3 – переходная втулка; 4 – шпиндельная бабка; 5 – стол заготовки; 6 – салазки

N⁰	Наименование, ед. изм.	Числовое
$1 \qquad \Pi_{\text{TOTMOSTIVE}} = (r/rac^3)$		0.007018
2		156 260
2		130200
3	Модуль Юнга, Е (МПа)	1,251,5.10
4	Коэффициент Пуассона, µ	0,27

Таблица 1. Механические свойства серого чугуна СЧ 25

Рис. 2. Наложение сетки объемных тетраэдрических элементов на расчетную модель

Рис. 3. Результат расчета смещений контрольных точек при контактных взаимодействиях между станиной стола и станиной стойки

б)

Рис. 4. Результат расчета смещений контрольных точек при контактных взаимодействиях между: а) переходной втулкой и шпиндельной бабкой;

б) станиной стола и столом заготовки, станиной стойки и салазками

Таблица 2. Результаты исследов	аний перемещени	й контрольных т	очек затянутог	го стыка
	при контактном	взаимодействии	станин стола	и стойки

	Смещение, мкм		Отклонение расчетного значения от экспериментального	
Точки	Расчетное,	Экспериментальное,	Абсолютное,	Относительное,
	ΔY_P	ΔY_{\Im}	$ \Delta \mathbf{Y}_{\mathbf{P}}\!\!-\!\!\Delta \mathbf{Y}_{\mathbf{\Im}} $, мкм	$(\Delta Y_P - \Delta Y_{\ni} / \Delta Y_{\ni}) * 100, \%$
1	38,583	34,7	3,883	11,1902
2	38,451	34,5	3,951	11,45217
3	38,496	34,3	4,196	12,23324
4	39,570	35,2	4,370	12,41477
5	39,095	37,1	1,995	5,377358
6	37,439	33,3	4,139	12,42943

	Смещение, мкм		Отклонение расчетного значения от экспериментального	
Точки	Расчетное,	Экспериментальное,	Абсолютное,	Относительное,
	ΔY_P	ΔY_{\Im}	$ \Delta \mathbf{Y}_{\mathrm{P}}\!\!-\!\!\Delta \mathbf{Y}_{\mathrm{O}} $, мкм	$(\Delta Y_P - \Delta Y_{\Im} / \Delta Y_{\Im}) * 100, \%$
7	37,398	33,4	3,998	11,97006
8	37,516	33,3	4,216	12,66066
9	38,523	33,9	4,623	13,63717
10	38,952	33,7	5,252	15,58457

Таблица 3. Результаты исследований перемещений контрольных точек в затянутом стыке при контактном взаимодействии переходной втулки и шпиндельной бабки

	Смеще	ние, мкм	Отклонение расчетного значения от экспериментально	
Точки	Расчетное,	Экспериментальное,	Абсолютное,	Относительное,
	ΔY_P	$\Delta Y_{ m eta}$	$ \Delta \mathbf{Y}_{\mathrm{P}}\!\!-\!\!\Delta \mathbf{Y}_{\mathrm{O}} $, мкм	$(\Delta Y_P - \Delta Y_{\Im} / \Delta Y_{\Im}) * 100, \%$
1	55,149	49,9	5,249	10,51904
2	55,389	50,0	5,389	10,778
3	55,054	49,8	5,254	10,5502
4	54,609	49,6	5,009	10,09879
5	54,366	49,4	4,966	10,05263
6	54,655	49,1	5,555	11,31365
7	55,030	49,8	5,230	10,50201
8	55,170	50,0	5,170	10,34
9	54,993	49,8	5,193	10,42771
10	54,676	49,4	5,276	10,68016
11	54,507	49,3	5,207	10,56187
12	54,688	49,4	5,288	10,70445

Таблица 4. Результаты исследований перемещений контрольных точек подвижного стыка при контактном взаимодействии стола заготовки и станины стола

	Смеще	ние, мкм	Отклонение расчетного значения от экспериментально	
Точки	Расчетное,	Экспериментальное,	Абсолютное,	Относительное,
	ΔY_P	ΔY_{\Im}	$ \Delta Y_P - \Delta Y_O $, MKM	$(\Delta Y_P - \Delta Y_{\Im} / \Delta Y_{\Im}) * 100, \%$
1	10,654	9,8	0,854	8,714286
2	9,190	8,5	0,69	8,117647
3	22,353	19,8	2,553	12,89394
4	23,567	20,2	3,367	16,66832
5	24,793	20,9	3,893	18,62679
6	29,970	26,1	3,87	14,82759
7	14,337	12,7	1,637	12,88976
8	14,274	12,6	1,674	13,28571
9	26,935	24,3	2,635	10,84362
10	28,441	26,9	1,541	5,728625
11	29,603	27,4	2,203	8,040146
12	33,931	29,6	4,331	14,63176
13	16,346	15,3	1,046	6,836601
14	17,555	16,4	1,155	7,042683
15	29,225	25,1	4,125	16,43426
16	31,092	28,2	2,892	10,25532
17	32,091	29,3	2,791	9,525597
18	35,877	31,2	4,677	14,99038
19	13,208	11,7	1,508	12,88889
20	12,855	11,2	1,655	14,77679
21	25,920	22,1	3,82	17,28507
22	27,319	24,6	2,719	11,05285
23	28,478	25,7	2,778	10,80934
24	33,144	28,5	4,644	16,29474
25	10,230	9,8	0,43	4,387755

M.A. F	убнов	«Метолика анализа силові	лх леформаций	несущих	систем	станков)
111.7.1	уоцов	«пстодика апализа силов	ях деформации	пссущих	CHUICM	CTARKUB

	Смещение, мкм		Отклонение расчетного значения от экспериментального	
Точки	Расчетное,	Экспериментальное,	Абсолютное,	Относительное,
	ΔY_P	ΔY_{\Im}	$ \Delta \mathbf{Y}_{\mathrm{P}}\!\!-\!\!\Delta \mathbf{Y}_{\mathrm{O}} $, мкм	$(\Delta Y_P - \Delta Y_{\Im} / \Delta Y_{\Im}) * 100, \%$
26	9,0681	8,7	0,3681	4,231034
27	21,819	19,6	2,219	11,32143
28	22,550	19,8	2,750	13,88889
29	23,777	20,5	3,277	15,98537
30	29,082	25,5	3,582	14,04706

Таблица 5. Результаты исследований перемещений контрольных точек подвижного стыка при контактном взаимодействии салазок и станины стойки

	Смещение, мкм		Отклонение расчетного значения от экспериментальн	
Точки	Расчетное,	Экспериментальное,	Абсолютное,	Относительное,
	ΔY_P	ΔY_{\Im}	$ \Delta \mathbf{Y}_{\mathrm{P}}\!\!-\!\!\Delta \mathbf{Y}_{\mathrm{O}} $, мкм	$(\Delta Y_P - \Delta Y_{\Im} / \Delta Y_{\Im}) * 100, \%$
31	37,574	32,3	5,274	16,32817
32	37,946	32,3	5,646	17,47988
33	38,505	33,1	5,405	16,32931
34	38,556	33,1	5,456	16,48338
35	38,441	33,1	5,341	16,13595
36	38,142	33,1	5,042	15,23263
37	45,048	41,4	3,648	8,811594
38	45,4	41,2	4,2	10,19417
39	46,219	41,3	4,919	11,91041
40	45,998	41,4	4,598	11,10628
41	45,888	41,1	4,788	11,64964
42	45,612	41,1	4,512	10,9781
43	40,08	36,5	3,58	9,808219
44	39,271	36,4	2,871	7,887363
45	39,945	36,5	3,445	9,438356
46	40,511	36,6	3,911	10,68579
47	40,782	36,6	4,182	11,42623
48	41,654	36,5	5,154	14,12055
49	28,971	25,3	3,671	14,50988
50	23,549	22,7	0,849	3,740088
51	24,559	22,9	1,659	7,244541
52	25,934	22,5	3,434	15,26222
53	26,981	23,6	3,381	14,32627
54	31,612	27,5	4,112	14,95273
55	21,752	18,6	3,152	16,94624
56	16,032	14,2	1,832	12,90141
57	18,628	15,3	3,328	21,75163
58	19,332	16,8	2,532	15,07143
59	20,591	17,4	3,191	18,33908
60	25,268	21,5	3,768	17,52558

 в модели предусмотрено взаимодействие деталей посредством подвижных и неподвижных контактных взаимодействий;

 между опорами станины и фундаментом жесткость контактных взаимодействий приравнена к бесконечности;

– для соответствия модели динамическим характеристикам настроена плотность материалов элементов расчетной модели для учета веса узлов и механизмов реальной конструкции: корпус шпиндельной бабки $\rho{=}6030~{\rm kr/m^3};$ стойка $\rho{=}7860~{\rm kr/m^3};$ станина стола, станина стойки $\rho{=}7010~{\rm kr/m^3};$ каретка $\rho{=}11800{\rm kr/m^3};$

– расчетная модель технологической системы станка разбита на объемные тетраэдрические элементы. Это позволяет делать более точный расчет за счет дополнительных узлов на середине каждой грани тетраэдра при одинаковом количестве конечных элементов в модели [3; 4; 7].

С помощью пакета прикладных программ ANSYS Workbanch 14.5 был выполнен статистический расчет перемещений элементов несущей системы данной технологической системы.

Элементы станины станка изготовлены из серого чугуна СЧ 25 ГОСТ 1412-85. Механические свойства серого чугуна СЧ 25 указаны в таблице 1. Были произведены исследования силовых деформаций в местах следующих контактных взаимодействий (рис. 1): затянутого стыка между станиной стола 1 и станиной стоки 2; затянутого стыка между переходной втулкой 3 и шпиндельной бабкой 4; подвижного стыка между столом заготовки 5 и станиной стола; подвижного стыка между салазками 6 и станиной стойки.

Была выполнена настройка контактных взаимодействий в расчетной модели со следующими свойствами: между станиной стола и станиной стойки был выбран статус «no separation»; между переходной втулкой и шпиндельной бабкой – «no separation»; между столом заготовки и станиной стола – «frictional» – трение чугун-чугун со смазкой k=0,15; между салазками и станиной стойки – «frictional» – трение чугун-чугун со смазкой k=0,15.

Остальные контакты были приняты как неразъемные – «bonded».

При перемещении салазок со стойкой и стола с заготовкой станины стола и стойки возникают переменные силовые деформации изгиба и кручения, что приводит к потере точности станка [3; 4; 9–13]. Нагрузки от сил резания при обработке не учитывались, так как они имеют несущественное влияние на деформацию составной станины, в отличие от веса стойки и обрабатываемой заготовки [14–20].

На модель прецизионного ГКРС была наложена сетка тетраэдрических элементов (рис. 2). После была проведена коррекция размера сетки в местах концентрации напряжений, перепадов размеров и в наиболее важных нагруженных и ответственных частях станка.

После этого был проведен расчет в трех положениях стойки с инструментом: исходном, центральном и при положении инструмента у заготовки при обработке.

Результаты теоретических и практических исследований представлены на рис. 3, 4 и в таблицах 2–5.

Полученные теоретические данные расходятся с данными, полученными в результате эксперимента, на 12–14 %, что говорит об адекватности применяемой методики расчета точности.

Данная методика позволяет учитывать собственные деформации и контактные взаимодействия корпусных деталей, что дает возможность существенно повысить точность расчетов при исследовании и проектировании технологического оборудования.

СПИСОК ЛИТЕРАТУРЫ

- Косов М.Г., Кутин А.А., Саакян Р.В., Червяков Л.М. Моделирование точности при проектировании технологических машин. М.: МГТУ им. Н.Э. Баумана, 1997. 103 с.
- Косов М.Г., Корзаков А.А. Моделирование контактной жесткости деталей с учетом рельефа шероховатости их поверхности // СТИН. 2003. № 12. С. 23–25.
- Горшков Б.М. Повышение точности прецизионных станков с составными станинами. Саратов: Изд-во Сарат. ун-та, 2004. 184 с.
- Ремнёва О.Ю. Повышение точности обработки отверстий на горизонтальных координатно-расточных станках путем автоматической стабилизации взаимного расположения их осей с осью инструмента : автореф. дис. ... канд. техн. наук. Тольятти, 2013. 20 с.

- 5. Решетов Д.Н., Иванов А.С. Справочные данные по контактной жесткости плоских стыков // Вестник машиностроения. 2002. № 4. С. 39–45.
- Рыжов Э.В. Контактная жесткость машин. М.: Машиностроение, 1966. 193 с.
- 7. Пахмуров В.А., Шалдыбин А.Я. Использование метода конечных элементов для анализа конструкции базовых деталей тяжелых станков // Станки и инструмент. 1992. № 2. С. 11–13.
- 8. Тихомиров В.П. Имитационное моделирование контактного взаимодействия деталей машин с шероховатыми поверхностями // Трение и износ. 1990. Т. 2. № 4. С. 607–614.
- 9. Агафонов В.В. Теоретическое определение центра тяжести и положения главных осей упругой системы станка // СТИН. 2005. № 8. С. 29–31.
- Атапин В.Г., Порватова Н.Г. Расчет жесткости базовых деталей тяжелых столов при неравномерно распределенной нагрузке // Вестник машиностроения. 2000. № 7. С. 10–12.
- 11. Атапин В.Г. Проектирование несущих конструкций тяжелых многоцелевых станков с учетом точности, производительности, массы // Вестник машиностроения. 2001. № 2. С. 3–6.
- Базров Б.М. Технологические основы проектирования самоподнастраивающихся станков. М.: Машиностроение, 1978. 216 с.
- 13. Базров Б.М. Расчет точности машин на ЭВМ. М.: Машиностроение, 1984. 256 с.
- Балакшин Б.С. Теория и практика технологии машиностроения. В 2 кн. Кн. 1. Технология машиностроения. М.: Машиностроение, 1982. 203 с.
- 15. Основы технологии машиностроения / под ред. А.М. Дальского. М.: Изд-во МГТУ им. Н.Э. Баумана, 1997. 564 с.
- 16. Бушуев В.В. Компенсация упругих деформаций в станках // Станки и инструмент. 1991. № 3. С. 42–46.
- 17. Бушуев В.В. Жесткость станков // СТИН. 1996. № 8. С. 26–32; № 9. С. 17–20.
- Васильев А.С. Суммарная погрешность обработки и взаимное влияние ее составляющих // Известия вузов. Машиностроение. 1999. № 3. С. 89–96.
- 19. Васильев Г.Н., Ягопольский А.Г., Тремасов А.П. Проблемы диагностики и обеспечение надежности металлорежущих станков // СТИН. 2003. № 7. С. 14–17.
- Проектирование металлорежущих станков и станочных систем. Ч. 1. Проектирование металлорежущих станов / под общ. ред. А.С. Проникова. М.: Машиностроение, 1994. 443 с.
- 21. Агафонов В.В. Определение погрешностей обработки с учетом динамических характеристик упругой системы станка // СТИН. 2006. № 5. С. 10–13.

REFERENCES

- Kosov M.G., Kutin A.A., Saakyan R.V., Chervyakov L.M. Modelirovanie tochnosti pri proektirovanii tekhnologicheskikh mashin [Modeling of accuracy while designing technological machines]. Moscow, MGTU im. N.E. Baumana Publ., 1997. 103 p.
- Kosov M.G., Korzakov A.A. Modeling of contact parts stiffness with regard to the roughness relief of their surface. *STIN*, 2003, no. 12, pp. 23–25.

- 3. Gorshkov B.M. *Povyshenie tochnosti pretsizionnykh stankov s sostavnymi staninami* [Improvement of accuracy of precision machines with composite foundation slabs]. Saratov, Saratovsky universitet Publ., 2004. 184 p.
- 4. Remneva O.Yu. Povyshenie tochnosti obrabotki otverstiy na gorizontalnykh koordinatno-rastochnykh stankakh putem avtomaticheskoy stabilizatsii vzaimnogo raspolozheniya ikh osey s os'yu instrumenta. Avtorev. diss. kand. tekhn. nauk [Improvement of accuracy of holes processing on horizontal multi-axis boring machines by means of self-regulation of mutual alignment of their axis with the axe of the tool]. Togliatti, 2013. 20 p.
- Reshetov D.N., Ivanov A.S. Reference data on contact rigidity of flat joints. *Vestnik mashinostroeniya*, 2002, no. 4, pp. 39–45.
- Ryzhov E.V. Kontaktnaya zhestkost' mashin [Machine contact rigidity]. Moscow, Mashinostroenie Publ., 1966. 193 p.
- Pakhmurov V.A., Shaldybin A.Ya. Application of finite-element method for analysis of base parts structures of heavy machines. *Stanki i instrument*, 1992, no. 2, pp. 11–13.
- 8. Tikhomirov V.P. Simulation study of contact interaction of rough-surfaced machine components. *Trenie i iznos*, 1990, vol. 2, no. 4, pp. 607–614.
- 9. Agafonov V.V. Theoretical determination of gravity center and position of main axles of machine spring system. *STIN*, 2005, no. 8, pp. 29–31.
- 10. Atapin V.G., Porvatova N.G. Calculation of rigidity of base parts of heavy tables during irregular loading. *Vestnik mashinostroeniya*, 2000, no. 7, pp. 10–12.
- 11. Atapin V.G. The structural design of heavy machining centers based on accuracy, productivity, mass. *Vestnik mashinostrieniya*, 2001, no. 2, pp. 3–6.

- 12. Bazrov B.M. *Tekhnologicheskie osnovy proektirovaniya* samopodnastraivayushchikhsya stankov [Technological basis of design of self-tuning machines]. Moscow, Mashinostroenie Publ., 1978. 216 p.
- 13. Bazrov B.M. *Raschet tochnosti mashin na EVM* [Machine accuracy calculation using ECM]. Moscow, Mashinostroenie, 1984. 256 p.
- Balakshin B.S. Teoriya i praktika tekhnologii mashinostroeniya. Kniga 1. Tekhnologiya mashinostroeniya [Theory and practice of mechanical engineering. Book 1. Mechanical engineering]. Moscow, Mashinostroenie, 1982. 203 p.
- Dalsky A.M., ed. Osnovy tekhnologii mashinostroeniya [Manufacturing engineering science]. Moscow, MGTU im. N.E. Baumana Publ., 1997. 564 p.
- 16. Bushuev V.V. Compensation of elastic deformation in machines. *Stanki i instrument*, 1991, no. 3, pp. 42–46.
- 17. Bushuev V.V. Machines stability. *STIN*, 1996, no. 8, pp. 26–32; no. 9, pp. 17–20.
- Vasilyev A.S. Total uncertainty of processing and mutual influence of its components. *Izvestiya vuzov*. *Mashinostroenie*, 1999, no. 3, pp. 89–96.
- 19. Vasilyev G.N., Yagopolsky A.G., Tremasov A.P. The problem of diagnostics and reliability control of metal cutting machines. *STIN*, 2003, no. 7, pp. 14–17.
- 20. Pronikov A.S., ed. Proektirovanie metallorezhushchikh stankov i stanochnykh system. Sh. 1. Proektirovanie metallorezhushchikh stanov [Design of metal cutting machines and machine systems. Part 1. Design of metal cutting mill]. Moscow, Mashinostroenie Publ., 1994. 443 p.
- 21. Agafonov V.V. Determination of working errors taking into account the dynamic characteristics of machine elastic system. *STIN*, 2006, no. 5, pp. 10–13.

METHODOLOGY OF ANALYSIS OF STRENGTH DEFORMATIONS OF MACHINES CARRYING SYSTEMS DURING CONTACT INTERACTIONS OF SURFACES

© 2016

M.A. Rubtsov, postgraduate student of Chair "Service of technical and technological systems" Volga Region State University of Service, Togliatti (Russia)

Keywords: horizontal multi-axis boring machine; strength deformations of carrying systems; precision horizontal multi-axis boring machine (HMBM); contact interactions of surfaces.

Abstract: Taking into account high requirements to the operation conditions of precision machines, the study of strength deformations of carrying systems is a rather critical task. The paper presents the methodology of analysis of strength deformations of the machines carrying systems when moving the substantial movable bodies of manufacturing systems during contact interactions of surfaces using the finite element method. The authors selected 2A459SF4 precision horizontal multi-axis boring machine (HMBM) as an object of study. The authors developed a 3-D model of a machine taking into account the joint of fixedly connected parts with movable machine parts. The study was carried out using the ANSYS Workbench 14.5 software complex. The paper presents the accessible assumptions that were taken into account when calculating strength deformations during contact interactions. The authors give the detailed description of configurable settings of contact interactions within the design model in the ANSYS Workbench 14.5 software complex. The authors carried out the static calculation of strength deformations of carrying system of precision HMBM during contact interactions with the further calculation data entry into the tables. During calculation, the discrete movement of the machine column occurred. The calculation was carried out at three positions of the machine column: the most remote from the processed workpiece, central position and during the workpiece processing. It was done to consider the influence of column position on total strength deformations of the machine frame and the strength deformations in the joints during contact interactions. The paper presents the comparative analysis of control points movement during theoretical and experimental studies. The authors proved the adequacy of this methodology of analysis of the machine carrying systems strength deformations during contact interaction of surfaces.