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Abstract: The wide application of amorphous alloys is complicated by a narrow range of their thermal stability, embrit-
tlement at elevated temperatures, difficult machinability, and low tensile plasticity. Ultrasonic treatment is an innovative
method for solving these problems. Integration of ultrasonic technology into the technological chain can contribute to
the improvement of the operational property of amorphous alloys, the manufacture of parts from them at different scale
levels, and high-quality joining with other materials. The effect of ultrasonic vibrations on structural transformations and
mechanical behaviour of amorphous alloys is not completely understood. The lack of an integrated scientific basis for
the physical processes and accompanying effects in amorphous alloys under ultrasonic excitation prevents the develop-
ment of the corresponding technology and optimization of its modes. Over the past decade, researchers have proposed
various methods of ultrasonic treatment of amorphous alloys to improve their formability, achieve a balance of plasticity
and strength, and consolidate with each other and with metals. In addition, certain ideas have been developed about their
structure rejuvenation and the possibilities of transformation them to a partially nanocrystalline state under the action of
ultrasound. To summarise these developments, the systematic discussion on features, parameters, and modes of ultrasonic
treatment applied to ribbon and bulk amorphous alloys to improve their structure-sensitive properties are provided in this
review. On this basis, the limitations of current study are discussed. The most promising applications of ultrasonic tech-
nologies for rapidly melt-quenched alloys in the near future include: their additive manufacturing, creation of hybrid com-
posites by ultrasonic welding, ultrasonic forming for manufacturing products of complex shapes and geometries, complex
multi-stage processing to obtain a unique combination of properties (e.g., melt quenching — laser irradiation — ultrasonic
stimulation). This review enhances the existing knowledge on ultrasonic control of the properties and structure of amor-
phous alloys and facilitates a fast references on this topic for researchers.
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INTRODUCTION

Amorphous alloys (AAs) produced by rapid melt
quenching or by casting in a copper casting-mold
(in the case of bulk amorphous alloys) have unique physical
properties, which makes them very promising for many
applications in such areas as energy production, electronics,
catalysis, medicine, and the aerospace industry [1-3]. Due
to their unusual structure with the absence of long-range
order and structural defects such as dislocations and grain
boundaries, amorphous alloys, compared to their crystalline
counterparts, are characterised by an increased elastic limit,
high strength, hardness, corrosion and wear resistance, cata-
lytic activity, and some of them — by biocompatibility [4—
6]. However, as a kind of metastable material, AAs trans-
form into a more stable energy state under the action of
applied stresses, high temperatures, or even under natural
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conditions. The phenomenon of “aging” of the structure
may be accompanied by deterioration of properties. More-
over, amorphous alloys demonstrate almost zero tensile
plasticity due to the propagation of main highly localised
shear bands, which prevents their use as a structural mate-
rial [7; 8]. In this regard, the close attention of material sci-
entists is focused on the development of strategies for
the structural rejuvenation of AAs, which will contribute to
greater disordering of the amorphous matrix and, thus,
effective softening [9]. On the other hand, the balance of
strength and plasticity can be achieved by forming an opti-
mal proportion of nanocrystals in the volume of AAs,
which can prevent crack propagation and initiate an in-
crease in the number of shear bands, due to which plastic
deformation in amorphous alloys is realised [10—12]. Nu-
merous approaches are used to modify the structure of AAs,
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overcome embrittlement, and improve their thermal sta-
bility: annealing and thermal cycling [13-15], electro-
static compression [16; 17], ion irradiation [18; 19], cold
rolling [20; 21], and high-pressure torsion [22; 23].
However, these methods usually require a lot of experi-
mental time and high costs, and some have limitations in
sample size, which makes their application in production
processes quite difficult. Therefore, there is an urgent
need to develop an innovative, one-step, convenient ap-
proach to the processing of amorphous alloys.
The method based on the use of ultrasonic (US) vibration
energy with a frequency above 20 kHz is one of
the promising methods for processing materials, charac-
terised by ease of control and a fast response time [24—
27]. It can directly introduce high energy into the glassy
matrix, affecting the response of properties and complex
physical processes, including glass transition, structural
relaxation, crystallization, strengthening and plasticiza-
tion mechanisms.

The purpose of this work is to analyse the world experi-
ence of using ultrasonic processing to control the structure
and improve the properties of amorphous alloys, as well as
to carry out technological operations with them.

METHODS

The search for relevant scientific papers related to
the review topic covered the period from the moment of
the first publication to the present day. The selection
was carried out among papers of peer-reviewed jour-
nals, books, conference materials from reliable interna-
tional abstracting and indexing databases Web of Sci-
ence and Scopus. Moreover, in order to track current
studies, the resources of the Russian Science Citation
Index (RSCI) and the patent database of the Russian
Federation were used.

The ranking of the found materials was carried out de-
pending on the characteristics of the physical processes and
phenomena occurring during ultrasonic treatment, as well
as the achievement of specific practical goals. In accor-
dance with this, three areas of research on amorphous
alloys during ultrasonic modification were identified:

1) study of the processes of rejuvenation of their struc-
ture for the implementation of forming;

2) study of the processes of nanocrystallization of
amorphous alloys for the best combination of strength and
plasticity;

3) development of the methodology of ultrasonic solder-
ing/welding for effective rapid connection of amorphous
alloys with each other or with crystalline materials.

RESULTS

1. Retrospective analysis

When analysing literary sources in retrospect, it is
important to note an important fact: the first publications
on the use of ultrasonic excitation on amorphous alloys
appeared in Russia. In 1992, scientists O.M. Smirnov
and A.M. Glezer from the I.P. Bardin Central Research
Institute of Ferrous Metallurgy in their paper [28], and

a year later in their author’s certificate [29], noted
the effectiveness of ultrasonic treatment for improving
the mechanical properties of Fe—Cr—B amorphous alloys
ribbon. Only almost a decade later, in 2003, full-scale
studies in this area were launched at the Universities of
Osaka and Kagawa [30; 31]. At first, the response
of elastic and inelastic properties of bulk zirconium-
based ZrssCujoNisAl;, AA under ultrasonic vibrations
was studied, and the experiments were carried out in
a very wide frequency range of 300-1500 kHz [30].
In 2005, the features of Pdy,sNi;sCuzgPyy AA crys-
tallization were studied at frequencies of 0.35 MHz [31].
Then, Japanese researchers decided to test the possibility
of joining amorphous alloys with each other using ultra-
sonic welding and in 2008 reported successful consolida-
tion of ZrssCu;¢NisAl;, using a combination of ultrasonic
welding and slight heating (below the glass transition
temperature) [32]. Several publications were enough to
arouse interest in China and to seize the initiative in
conducting fundamental research on the effect of ultra-
sonic stimulation on the structure and properties of
amorphous alloys. Currently, Chinese research groups
are the absolute leaders in this area. Attempts to study
ultrasonic technologies as applied to amorphous alloys
were also made in the USA [33], Belarus [34], Germany
[35], and Ukraine [36—-39], but only sporadically.

2. Structural rejuvenation

2.1. The problem of embrittlement and its solutions

It was found that metallic materials undergo signifi-
cant softening accompanied by a decrease in strength
under the influence of ultrasound (acoustoplasticity ef-
fect, or Blaha effect) [40; 41]. Based on these characte-
ristics, the forming technology using ultrasonic vibration
was developed. Brittleness remains one of the main dis-
advantages of amorphous alloys, preventing their wider
application. During labour-intensive processes (irradia-
tion, elastostatic loading, cryothermal cycling) when
combating the loss of plasticity in AA, reverse relaxation
inevitably intervenes, which weakens the effect of struc-
tural rejuvenation. Moreover, the rejuvenation mecha-
nism itself is not completely clear. In order to find suit-
able solutions to the embrittlement problem, in studies in
recent years, ultrasonic vibrations have been combined
with the process of forming amorphous alloys.

In [42; 43], a significant improvement in the thermo-
plastic formability of bulk Zr;sTi3Bess75Cug,s amorphous
alloys was found when using ultrasonic vibrations and its
positive correlation with the ultrasound amplitude. In [44],
a method of compression using ultrasonic vibration was
proposed. By the example of Zrs; sCuy79Nij46Al 0 Tis alloy,
it was shown that this method can achieve rapid (in 10 s)
structural rejuvenation, and the alloy itself becomes more
heterogeneous with better ability to plastic deformation.
Moreover, under ultrasonic compression, plastic deforma-
tion occurs on the fracture surface of the alloy, indicating
that as the ultrasound amplitude gradually increases, the
yield strength of the alloy decreases and the plasticity in-
creases, which can significantly simplify the formability of
the alloy at room temperature.

54

Frontier Materials & Technologies. 2025. No. 2



Permyakova L.E., Dyuzheva-Maltseva E.V. “Effect of ultrasonic treatment on structural transformations and mechanical behaviour...”

2.2. Physical aspects of the rejuvenation process and
the accompanying response of mechanical properties

Fig. 1 shows schematically a multilevel landscape of
potential energy illustrating the evolution of possible struc-
tural states of amorphous alloy. Energy wells and barriers
control the thermodynamic stability of the material. The
deepest minimum of energy corresponds to stable crystal-
line phases, and other energy minima represent some me-
tastable glassy states (Fig. 1 a).

Rejuvenation is accompanied by an increase in poten-
tial energy and an increase in the free volume concentra-
tion. In turn, structural relaxation leads to a decrease in
potential energy and a lower free volume content com-
pared to the initial state of amorphous alloy (under con-

ditions of ultrafast cooling during their production) [45].
Annihilation of free volume or loose packing regions
during aging leads to the fact that AAs become even
more brittle. However, when energy is introduced into
amorphous alloy using ultrasonic vibrations at certain
values of amplitude and exposure time, they are able to
rejuvenate, since they acquire additional free volume and
greater plasticity. During ultrasonic treatment, the com-
bined effect of external applied elastic stress, internal
converted heat and ultrasonic resonance of atoms can
stimulate the movement of loosely packed atoms in the
AA to a high-energy state, thereby causing the formation
of other regions with free volume and rheological units
to improve formability [44; 46].
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Fig. 1. Schematic illustrations of the energy states of atoms in the potential landscape (a)
and the structure evolution of amorphous alloys in initial state (b), during aging (c),
during ultrasonic rejuvenation (d) and afterwards (e)
Puc. 1. Cxemamuueckue unnoCmpayuy IHep2emuieckux COCMOosIHUL amomos 6 NOMeHYualbHoM Janowagpme (a)
U IBONIOYUU CIPYKMYPbL AMOPDHBIX CHAAB0E 8 UCX0OHOM cocmosinuu (D),
npu cmapenuu (c), 6 npoyecce ¥3 omonodicenus (d) u nocne nezo (e)
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In as-cast and melt-quenched amorphous alloys, re-
versible and irreversible B-relaxations can occur [47], the
behaviour of which can be judged by the configurations of
white and grey atoms in Fig. 1 b, respectively. With in-
creasing aging time, the grey regions gradually become
black, and the white ones are significantly compressed
(Fig. 1 ¢). Under ultrasonic loading, the structure again be-
comes loosely packed (Fig. 1 d), so the set of highly mobile
white atoms increases, and zones with grey atoms appear
again after exposure to ultrasound (Fig. 1 e).

In [48], using atomistic modelling and evaluation of
the nanomechanical characteristics of bulk LassAl,sNisCu;oCos,
Pd40CH30P20Ni10 and ZI'35Ti30CU.8_25B626_75 amOI'phOU.S
alloys, evidence was provided that their significant
plastic flow below the glass transition temperature un-
der ultrasonic exposure is explained by dynamic inho-
mogeneity and cyclically induced atomic-scale expan-
sions (liquefaction) in the amorphous alloys. This leads
to significant rejuvenation and final “collapse” of
the solid-like amorphous structure.

In [36; 37], the influence of preliminary ultrasonic
treatment on the mechanical properties and structural
features of bulk  Zrs; sTisCuy79Nijs6Al;g  and
Zr46.25Cuys 25Al; sEr; amorphous alloys was studied us-
ing the acoustic emission method under uniaxial com-
pression. The research results were interpreted within
a polycluster model of the AA structure. The analysis
of the obtained data allowed substantiating the mecha-
nism of structural changes and a decrease in the strength
of amorphous alloys as a result of alternating mechani-
cal loading with an ultrasonic frequency of 20 kHz.
The authors substantiated that the resistance to plastic
deformation of amorphous alloys is determined by
the strength of the intercluster boundaries, which are
restructured and “softened” under the action of ultra-
sonic mechanical loading.

In [49; 50], the mechanical behaviour of Pd;yCuszoP,oNijq
and LassAlysNisCuigCos amorphous alloys after ultra-
sonic vibrations was studied by the nanoindentation
method. A noticeable softening after ultrasonic treatment
was expressed as a decrease in hardness and elastic
modulus — by ~25 and 40 %, respectively. It was found
that flow defects with a shorter characteristic relaxation
time, activated under loading with ultrasonic cycling,
promote rapid diffusion of atoms with a low energy bar-
rier. Ultimately, this leads to a noticeable creep dis-
placement and, thus, to greater formability at ambient
temperature.

A method for producing amorphous alloys was pro-
posed, which included melting a metal blank in a cru-
cible, melt quenching the on a rapidly rotating disk, but
the nuance was that in order to increase the temperature
range of plasticity, immediately after removing the rib-
bon, it was additionally subjected to ultrasonic treatment
with an amplitude of alternating stresses [29]. In this
case, the ratio of the amplitude of alternating stresses to
the Young’s modulus of the processed material should be
within the range of (0.135-0.48)x107. This range was
chosen so that the applied alternating stresses of ultra-
sonic frequency did not exceed the yield strength of

the studied amorphous alloys, did not provoke their sub-
sequent destruction, but contributed to the effective
preservation of plasticity and a shift in the embrittlement
threshold towards higher temperatures.

In the work [28], using the example of the Fe;(CrisBs
AA, it was shown that, depending on the ultrasonic impact
parameters, the critical temperature of amorphous alloy
embrittlement can shift either upward or downward depend-
ing on the amplitude of the ultrasonic vibrations used.

The results of dilatometric studies in the work [38]
show an increase in the temperature of crystallization of
the FesNiySij4Bs AA by 30-50 K after different modes
of ultrasonic treatment and the microhardness of the
amorphous alloy decreases by 15 %. This indirectly con-
firms the fact that the percentage content of the crystal-
line phase in the alloy decreases due to a decrease
in the size or dissolution of frozen crystallization centres
in the amorphous alloy.

2.3. Ultrasonic assisted shear punching

Ma J. et al. used high-frequency vibrations for shear
punching of templates, products from bulk and ribbon
amorphous alloys of the following systems: Zr—Ti—Cu—Be,
Fe-Si-B, La—Al-Ni-Cu—Co, La-Ni—Al, and Cu—Zr [51—
53]. Fig. 2 shows a schematic representation of the experi-
mental assembly for this technology.

Under the action of ultrasonic vibration of the punch,
the plastic powder melts due to frictional heat generation
and viscoelastic thermal effect and continues to flow
downwards under the action of the extrusion of the ultra-
sonic head, plastically deforming the amorphous ribbon
or plate. The disordered structure of the amorphous al-
loys helps them to soften in a localised area during high-
frequency vibrations, which leads to low-stress deforma-
tions. For example, using ultrasonic vibrations and
a molten plastic viscous medium, various forms of AA in
the shape of the letters “B”, “M”, “G” and Chinese cha-
racters I, K were produced on an area of 5 mm® [51].
In [54], to increase the plasticity of amorphous alloys,
a method for their forming using ultrasonic vibrations in
liquid media (fresh and sea water, alcohol) was pro-
posed. In the process of this treatment, at low stress
(300 MPa) and temperatures significantly below the glass
transition temperature 7T,, complex structures such as
lattices, gear wheels and hexagons about 5 mm in size
were successfully produced from AA in 1 s.

These fast ultrasonic forming methods (from millise-
conds to several seconds) help to preserve the amorphous
nature. They largely allow avoiding time-dependent crystal-
lization and oxidation processes and thereby bypassing tra-
ditional heat treatment, as well as the risk of crystal growth.
In order to prevent the AA relaxation, it is possible to adjust
the ultrasonic thermal effect by controlling the amplitude
and time under compression with ultrasonic vibration, and
thereby effectively improve the mechanical properties of
amorphous alloys.

Promising ultrasonic methods to improve the plasticity
of amorphous alloys at room temperature (ultrasonic as-
sisted shear punching and ultrasonic extrusion forming) can
be applied to the rapid manufacture of macro-, micro-,
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Before treatment

i

During treatment

Fig. 2. Schematic diagram of the ultrasonic assisted micro-shear punching set-up:
1 — punch; 2 — polymer powder (e.g., ethylene vinyl acetate);
3 —amorphous alloy; 4 — mold cavity;
5 — softening zones in amorphous alloy (highlighted by dotted line)
Puc. 2. [Ipunyunuanvhas cxema ycmanosku osi Y3 co8uco6otl wmamnosKu.:
1 — nyaucon; 2 — nonumepHulil NOPOWIOK (Hanpumep, SMuieHeUHULAYEmam);
3 — amopghuwiii cnnas; 4 — npecc-gpopma ¢ norocmovio;
5 — 30Hbl pasmazueHus 8 aMopHOM cniase (8vl0eneHbl NYHKIMUPOM)

nanoproducts and devices from amorphous alloys on
the surface of metal materials. Forming of AA in liquids
opens up exciting opportunities for application in aero-
space, energy and marine engineering: in situ repair of
ships and containers, polar construction, deep-sea explora-
tion, providing valuable information and paving the way for
future advances in underwater processing techniques.

3. Nanocrystallization

3.1. Methods for creating an amorphous-
nanocrystalline state

When stretched, amorphous alloys demonstrate poor
macroscopic plastic deformation at ambient temperature,
which is a result of the formation of highly localised
shear bands, as well as surface softening, which limits
their wide application as construction materials [7; 8].
To solve this problem, methods have been proposed
aimed at increasing the heterogeneity of AAs or creating
a small number of micrometre-sized [55; 56] and
nanosized crystals [57; 58] embedded in amorphous ma-
trices: composition development [59], annealing treat-
ment [60], nitrogen additives [61], and severe plastic
deformation [62]. The scientific concept of the listed
technologies is to activate the nucleation of shear bands
or prevent the propagation of shear bands. Ultrasound
induces strong forced vibration action of atoms and/or
molecules and nonlinear effects such as acoustic cavita-
tion and acoustic flow, which change the microstructure
and properties of various materials. In particular,
the introduction of ultrasonic energy into AAs can in-
crease their heterogeneity in atomic rearrangement and
even lead to the formation of crystallites. Ultrasonic
resonance can modulate the inhomogeneity of AAs and
improve the mechanical properties of rejuvenated zones
[63]. Ultrasonic vibrations of MHz frequency lead to

partial crystallization of bulk Pd-based AA when it is
annealed below the glass transition temperature [31]. In
[33], the ultrasonic surface modification method was
used to treat ZryyTi;;Cu oNijgBeo amorphous alloy and it
was shown that its fracture strength and deformation
were enhanced in a three-point bending experiment.

3.2. Balance of strength and plasticity

An urgent issue arises: can ultrasound overcome the di-
lemma of compromise between strength and plasticity in
amorphous alloys? The introduction of a significant amount
of free volume and a small amount of dispersed nanocrys-
tals into AA by means of ultrasonic vibrations can effec-
tively prevent the propagation and expansion of cracks dur-
ing fracture, thereby improving their strength and plasticity
at room temperature [64; 65]. The authors of [65] used in-
termittent high-frequency vibration loading to control
the behaviour of shear deformation and atomic arrangement
in bulk ZI'4]'zTi13'8CU]2.5Ni]0B€22.5 AA. It was found that this
method allowed increasing very quickly (in 4 s) the plasti-
city of the alloy (up to 5.3 %) and its strength (up
to 2240 MPa) by increasing the content of free volume and
forming CuZr, nanocrystals in the amorphous matrix.
However, it was noted that with excess ultrasonic energy,
there is a risk of transition from the plastic state
to the brittle state if the volume fraction of nanocrystals
exceeds the critical limit.

In work [64], amorphous Cu-based composites at room
temperature were subjected to elastic preload from 250 to
1000 N and ultrasonic treatment with ultrasound amplitudes
from 15 to 50 pm. It was shown that at low values of ampli-
tudes and preloads, the free volume dominates, and
nanocrystals do not precipitate. At low amplitudes / me-
dium preloads or at medium amplitudes / low preloads,
the free volume and nanocrystals coexist together as inte-
gral parts of the structure. At high values of amplitudes and
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loads, nanocrystals prevail, and the free volume content
decreases sharply. Increasing the amplitude and decreas-
ing the preload improves the efficiency of ultrasonic
transmission.

In the work [66], 20 kHz ultrasonic excitation was ap-
plied to bulk Zrys75Cuys75Als s amorphous alloy and its in-
fluence on the microstructure evolution and mechanical
properties was studied. It is found that Cu;¢Zr; nanocrystals
can be formed after ultrasonic vibrations. The evolution of
nanocrystalline particles leads to an increase in plasticity
during compression at room temperature in combination
with an increase in the yield strength.

Currently, the construction of gradient structures has
become a successful strategy in the development of ad-
vanced metallic materials with excellent performance pro-
perties. By ultrasonic vibration treatment, it was possible to
form a gradient amorphous-nanocrystalline structure in
Zr46CugeAlg bulk amorphous alloy [67]. Using 20 kHz ul-
trasonic cyclic loading in the elastic mode, it is possible to
obtain gradient structures with different volume fractions of
crystallised substance in less than 2 s by adjusting the input
ultrasonic energy. This innovative approach has clear ad-
vantages: it is extremely fast, requires minimal stress, and
allows adjusting easily the degree of structural gradients by
fine adjustment of the processing parameters. Nanoindenta-
tion tests show higher hardness near the impact surface,
which is explained by a higher degree of nanocrystal forma-
tion, which gradually decreases with depth. As a result of
the gradient dispersion of nanocrystals after ultrasonic
treatment, increased plasticity of Zr,CuyAly AA was
found, characterised by the formation of multiple shear
bands. Microstructural studies show that nanocrystallization
induced by ultrasonic treatment occurs due to local atomic
rearrangements in phase-separated regions rich in Cu with
high diffusion mobility.

The study of the effect of ultrasonic mechanical activa-
tion on the structural-phase transformations of TisoNiysCuys
AA carried out by the authors of [34] using differential
scanning calorimetry (DSC) showed that this method of
action affects the crystallization parameters and marten-
sitic transitions. Temperatures and energies of crystalli-
zation increase after processing of amorphous ribbons in
a longitudinal vibration waveguide. In turn, after pro-
cessing of AA ribbons in an ultrasonic anvil, crystalliza-
tion temperatures increase, and the crystallization energy
decreases. The study of martensitic transformations
showed that processing in an ultrasonic anvil leads to
a decrease in characteristic temperatures and the magni-
tude of thermal effects, which may indicate a decrease in
the grain size of the crystalline phase.

Using ultrasonic vibrations, a method for producing
a series of composites from La-based amorphous alloys
is proposed [68]. By modulating the amplitude and time
of ultrasonic action, controlling the input energy of high-
frequency vibrations, such composites with different
proportions of the crystalline phase can be produced
easily and accurately in seconds at low pressure and
room temperature. By varying the degree of crystallinity,
reduced hardness and better plasticity of AA composites
are achieved compared to samples in the cast state.

Combining two technologies (ultrasonic treatment with
multiple rolling) as applied to Fe;sSi;3By and Alg;NigGds
AAs promotes an increase in the amount of free volume in
the amorphous phase and leads to a significant acceleration
of the AA crystallization processes [69; 70].

In [39], changes in the surface morphology and struc-
ture of the Fes; ¢Siy58B7,Cu; ¢Nb, 4 ribbon AA (Finemet) as
a result of severe deformation using ultrasonic impact
treatment at room temperature in air were studied. The AA
surface morphology after ultrasonic impact treatment is
the result of localised plastic deformation occurring
through the formation of a large number of shear bands.
The effect of structural-phase transformation in the volume
of the Finemet ribbon during ultrasonic impact treatment is
caused by an increase in atomic mobility during deforma-
tion, which can be sufficient for the formation of nanocrys-
tals by the diffusion mechanism and their uniform distribu-
tion in the amorphous matrix.

4. Ultrasonic material joining technologies

4.1. Alternative consolidation methods

One of the reasons limiting the large-scale application
of ribbon and bulk amorphous alloys is their geometric di-
mensions. The thickness of commercial rapidly melt-
quenched AA ribbons typically ranges from 20 to 30 pum,
and the width — from 1 to 100 mm. The diameter/thickness
of massive amorphous metal rods or plates can vary from 1
to 50 mm, and their length is usually no more than 80 mm.
Moreover, AA often needs to be joined with other crystal-
line alloys in technical applications. Therefore, the deve-
lopment of AA/AA, AA/metal, AA/crystalline alloy joining
methods has attracted much attention from researchers.
Amorphous alloy can become brittle due to crystallization
upon heating [1; 7]. Considering this fact, joining tempera-
tures should be maintained below the glass transition tem-
perature of amorphous alloy. Attempts have been made to
use various methods for AA/AA and AA/crystal joining. In
particular, spark welding was used to join ZrssAl;oNisCuzy AA
and crystallization in the joint was successfully avoided
[71]. The results showed that the tensile strength of the pro-
duced joints was equal to the strength of the original AA.
In similar experiments, electron beam welding was used
to consolidate the Zr4Bey;Ti;4CupNijy AA plate with
metallic nickel [72]. In [73], friction welding was tested
to join Pd4oNigPso / PdsCusoPyNijg, ZrssCuzpAljoNis /
Zr4Bey3Ti4CupoNiyg together. It was shown that amorphous
alloys could be joined at temperatures approximately 50 K
below the glass transition temperature without demonstrat-
ing crystallization at the interface.

4.2. Ultrasonic soldering

Ultrasonic soldering is a flux-free method that can ope-
rate in air. Ultrasonic vibrations help to improve the initial
wetting conditions at the solder/substrate interface [74; 75].
In this context, ultrasonic soldering can be used to join
some materials that are difficult to wet. Moreover, this type
of soldering can realise a connection through the low-
temperature eutectic solder/substrate phase [75; 76]. Thus,
ultrasonic soldering serves as an effective method for
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joining amorphous alloys at temperatures significantly be-
low their crystallization temperatures.

Melt-quenched iron-based amorphous foils are among
the superior soft magnetic materials used in amorphous
motors. Producing a strong connection between them is
a complex technical task when assembling amorphous sta-
tors with aluminium shells. The use of ultrasound with
a resonant frequency of 27 kHz and a vibration amplitude
of 15 pm in the soldering process, it was possible to join
qualitatively the Fe;;Sij4By amorphous alloy with an alu-
minium sheet at temperatures of 250-350 °C for 10 s [77].
Sn—Zn filler was used as a welding filler material. A FeZn,
compound was found at the filler metal/amorphous alloy
interface. The results showed that the initial wetting of
the interface and the refinement of the microstructure were
improved under the action of ultrasonic vibrations.

The characteristics of wetting the ZrssAl;(Cu;oNis
amorphous alloy using Sn—Cu—Ni solder were studied
using 40 kHz ultrasonic vibrations in open air at 528 K
for 90 s [78]. It was found that wetting mainly depends
on the collapse of cavitation bubbles on the AA surface,
initiating erosion. Such cavitation erosion is effective for
immediate removal of the passivation film from the AA
surface. The sono-capillary effect, which is also caused
by ultrasonic vibration, improves the adhesive properties
of the solder.

In [79], the behaviour of wetting pure tin with respect to
the Zrsy;,CuygNigAlj, 3 amorphous alloy was studied under
ultrasonic treatment (20 kHz) and a pressure of 0.2 MPa.
Heating to 300 °C without ultrasound showed a non-
wetting state of Sn for the amorphous alloy. Ultrasonic vi-
bration promoted the wetting of Sn. Before ultrasonic
treatment for 30 s, only physical adsorption was observed at
the Sn/AA interface. Increasing the ultrasonic treatment
time led to a change in the bonding at the Sn/AA interface
from a point contact to a local surface contact and a diffu-
sion layer. Two bonding modes were found at the Sn/AA
interface. In the order-order bonding mode, slight crystalli-
zation occurred inside the amorphous alloy near the inter-
face. The filler metal was bonded to the amorphous alloy
through an ordered structure. In the order-disorder bonding
mode, the filler metal and the amorphous alloy retained
their original structures. The interface was characterised by
stepped layers. The Cu content was higher than that of other
elements near the bonding boundary. Longer diffusion dis-
tances of Sn in the amorphous alloy were obtained at high
ultrasound power, high temperature (up to 400 °C), and
large immersion depth (up to 3 mm).

4.3. Ultrasonic powder consolidation

The work [80] reports the successful production of two-
phase composites of ZrssCusgNisAlj, and Al-6061 alumi-
nium alloy using ultrasonic powder consolidation at low
temperatures and stresses. A wide range of composites with
individual compressive strength and plasticity were ob-
tained by optimizing the mass ratios of ZrssCusoNisAl;, and
Al-6061 powders. Mechanical tests showed that increasing
the aluminium content improved plasticity while maintain-
ing significant strength. In particular, the composite with
a mass ratio of 5:5 demonstrated the best balance of me-

chanical properties, excellent compaction, homogeneity
without visible defects, and a relative density in the range
from 92 to 99 %. Microstructural analysis revealed the for-
mation of a tightly bonded interface with the diffusion
layer. This confirms that high-quality bonding was facili-
tated by ultrasonic vibration. Moreover, the ultrasonic pow-
der consolidation process has successfully produced com-
plex shapes from materials (star-shaped, toothed). This in-
novative approach is promising in the development of high-
quality lightweight composites to meet the requirements of
advanced manufacturing applications.

4.4. Ultrasonic welding

There are reports of successful production of “sand-
wich” composites from Zr;5Ti;0Cug,sBey7s ribbon amor-
phous alloy and Alg)LisMgsZnsCus high-entropy alloy
(HEA) [81], as well as from Lass;Al;sNisCu;oCos amor-
phous alloy and Co,,Cr,oFe oNiyyMn,, HEA [82] using ul-
trasonic excitation. The ribbons were first folded together
using a clamping force and then subjected to high-
frequency (20 kHz) vibrations of an ultrasonic sonotrode
that lasted for several seconds. During this process,
the amorphous alloys softened and bonded into a bulk mass
with the HEA ribbons. This low-temperature low-stress
method allowed creating composites that combine the pro-
perties of both amorphous and crystalline components.
Microscopic studies and computed tomography show good
bonding quality without pores and cracks in the composites
of AA and HEA. Due to the unique structure combining
soft and solid phases, the composite has improved me-
chanical properties compared to those obtained from a pure
single phase.

In the process of ultrasonic welding when joining AAs
to each other or to other materials, crystallization of
the amorphous structure can be prevented due to the weak
thermal effect and the quickness of the process. Other ad-
vantages of this technology include energy efficiency and
the absence of the need for welding consumables. An im-
portant feature is also the ability to join materials with dif-
ferent melting temperatures, since the process occurs in
the solid state.

Ultrasonic welding was used to join a sheet of commer-
cial forged aluminium alloy (AA5754) 1 mm thick and
a strips of Zrsg3Cuyg Al 04Nb; 5 commercial bulk amorphous
alloy (AMZ4) 0.4 mm thick [35]. The following process pa-
rameters were proposed: welding energy was 2000 W-s, dis-
placement amplitude was 41 pm, and welding force was
740 N. The results showed that the AA retains its amorphous
structure in the joint, and the joint strength is higher than the
strength of the Al sheet. In [83], a technology was considered
in which, using a normal pressure of 80 N, a vibration time
of 1s, and a frequency of 20 kHz, three-dimensional plates
of CusyZry,Ti;gNig AA with a thickness of 1 mm were suc-
cessfully “welded” without any signs of crystallization.
In [32], it was similarly shown that ultrasonic welding could
be used to consolidate ZrssCusNisAl, amorphous alloys
with each other, maintaining the bonding zone in an amor-
phous state. The joint area can be increased by using the glu-
ing condition with external heating to a temperature of 423 K
(below the glass transition temperature).
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Using ultrasonic welding, joints of bulk Zr¢Cus;Al,Ti
AAs with hypoeutectic Zn—3Al filler metal were produced
[84]. A thick wavy layer consisting of alternating
ZnsoAlysZrys/ZnyyZr sublayers was formed on the surface of
the Zr-based AA substrate, which provided a shear strength
of about 100 MPa for the welded samples.

It should be separately noted that a method for produc-
ing multilayer AA ribbons using ultrasonic welding has
been developed. This method can be used as an ultrasonic
additive manufacturing process, such as 3D printing, in
which thin metal strips are laid layer by layer to obtain
thicker metal samples. It can be imagined that if the AA
ribbons can be infinitely superimposed on each other under
the action of ultrasonic vibrations, then the glass-forming
capacity limitation on the AA dimensions will no longer
exist. Fig. 3 schematically shows the principle of consoli-
dating samples using ultrasonic welding.

Using ultrasonic welding technology, 4-5 pieces of Fe—
Si-B AA ribbons with a joint area of up to 8x8 mm® (each
layer thickness was 25 um) were successfully and quickly
(in 220 ms) joined [85]. The operating frequency, ultra-
sound amplitude, and maximum output power of the ultrasonic
welding equipment were 20 kHz, 35 pm, and 4000 W, respec-
tively. Similarly, multilayer Nig,,Cr;B;SiygFe; AA ribbons
were joined using ultrasonic welding, which were laid in 3—
4 layers (each layer thickness was 40 pm) [86]. Moreover,

v

Pressure

ultrasonic welding was used to prepare composite samples
in which two crystalline Al and Cu ribbons were joined
with Nig,;,Cr,B3SiggFe; AA ribbons [87]. However, the
laminated AA and metal-AA composites produced in the
above-mentioned works can be welded only in several lay-
ers, and the alternate, unlimited stacking, as in 3D printing,
has not yet been achieved [88].

It should be noted that, taking into account the morphology
of the joints and the phase stability, ultrasonic welding treat-
ment demonstrates powerful capabilities for consolidating
amorphous alloys both in air and in liquid media. In [89], bulk
LassAlpsNisCuypCos, ZrssCuzpAligNis amorphous alloys and
high-entropy Ti—Zr—Hf-Be—Ni amorphous alloy were se-
lected for ultrasonic joining in fresh and sea water, in al-
cohol, and in liquid nitrogen. It was shown that the tech-
nology using ultrasonic vibration eliminates high tempera-
ture and problems associated with high current (as in
the case of conventional underwater joining methods).
Moreover, the samples from the studied amorphous alloys
both had no obvious defects in the joined interface and
demonstrated excellent mechanical properties and corro-
sion resistance. This approach both provides an effective
underwater joining method for on-the-shelf and marine
applications and ensures a feasible joining strategy in ex-
treme conditions such as flammable environments in oil,
gas, organic solvents and cryogenic conditions in space.
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Fig. 3. Schematic diagram of ultrasonic vibration welding:
1 — sonotrode; 2 — fixture; 3, 4, 5 — layers of amorphous alloys
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DISCUSSION

In most publications on ultrasonic processing, the object
of study is massive amorphous alloys produced in the form
of rods, bars, plates. Increased interest clearly implies ex-
panding the boundaries of their use both as a functional and
as a construction material. Currently, bulk AAs are inte-
grated into jewellery, sports equipment (for example, golf
clubs and tennis rackets), used for the production of bio-
compatible implants, mobile phone cases, and applied for
reinforcement [3; 5; 6]. Ultrasonic forming has broad pros-
pects for overcoming the size limitations of cast amorphous
alloys, synthesizing new composites based on them. Nano-,
micro- and miniature products of complex shapes currently
produced in laboratory conditions using ultrasonic stimula-
tion of bulk AAs will later be able to compete with similar
products made of traditional metals and alloys. Moreover,
the US and Japan are developing defence industry products,
in particular, for the creation of lightweight and durable
composite armour plates based on ceramics and bulk AAs, as
well as for the replacement of the core material in anti-tank
armour-piercing shells with composites made of AAs due to
their similar density and performance properties [90].

However, in Russia, bulk amorphous alloys have not yet
found their large-scale application due to their difficult ma-
chinability; they are cast exclusively for research purposes
for fundamental science. Therefore, it is reasonable to adopt
the accumulated world experience in the use of ultrasonic
technology. Being an effective and convenient method of
subsequent processing to improve the final plasticity of
bulk AAs, ultrasonic modification will be of great impor-
tance for their further development and commercialization
in Russia.

In turn, amorphous, amorphous-nanocrystalline ribbons
and microwires are manufactured on an industrial scale in
Russia. PJSC Ashinsky Metallurgical Plant (Asha), PJSC
M-STATOR (Borovichi), and R&D Company GAMMA-
MET (Yekaterinburg) are the largest and most well-known
manufacturers in the market. Their rapidly melt-quenchered
ribbons are best known primarily for a high level of mag-
netic and corrosion properties and are used in electrical
products, transformers, magnetic screens, and as compo-
nents for protective coatings. In this regard, it is extremely
important to continue studying the effect of ultrasound on
amorphous alloys with an emphasis on the behaviour of
their magnetic and chemical properties. Judging by the lite-
rature, it is here that an obvious gap is noticeable. Most of
the studies conducted were focused on improving the me-
chanical response of AAs after ultrasonic vibrations, and
the study of corrosion resistance, magnetic behaviour, and
catalytic activity was not given due attention. Meanwhile,
the use of ultrasonic energy can provide saturation mag-
netization significantly higher than that achieved with con-
ventional annealing, along with a low coercive force. For
manufactured iron-based amorphous alloys, the use of ul-
trasonic vibrations can promote the balanced formation of
uniformly distributed ferromagnetic nanoclusters, which
will reduce anisotropy and, thus, increase the soft magnetic
properties of the ribbons. Moreover, the effect of ultrasonic
vibrations is quite capable of improving the corrosion resis-
tance of AAs in aggressive environments. It should be un-

derstood that the corrosion resistance of amorphous alloys
both depends on the alloying elements and is closely related
to their metastable amorphous structure. As practice has
shown, ultrasonic treatment of AAs can produce an amor-
phous-nanocrystalline state [64; 65; 67], which is characte-
rised by a decrease in the average atomic distance. A more
stable structure will lead to some decrease in the chemical
potential and will contribute to an increase in corrosion
resistance. Thus, it is advisable to initiate scientific studies
of the susceptibility of amorphous alloys to chemical action
after ultrasonic modification.

Selective ultrasonic stimulation has great potential for
adaptation of local nano-, microstructure and properties of
amorphous alloys: it is possible to achieve simultaneously
rejuvenation in areas of close packing of atoms with a de-
crease in the elastic modulus and relaxation in areas of
loose packing, suppressing the nucleation of the first shear
bands. In addition, the size, length and pattern of rejuve-
nated zones can be adjusted as needed.

Introduction of free volume and a small amount of dis-
persed nanocrystals into amorphous alloys due to ultra-
sound treatment allows improving their complex characte-
ristics (increasing plasticity and strength). However, it is
important to learn how to obtain controllably the optimal
ratio of amorphous and crystalline components, adjusting
the efficiency of ultrasound transmission and avoiding
the transition from plasticity to brittleness, by controlling
the ultrasound amplitude and preliminary loads. The nature
of embrittlement and attenuation of ultrasonic waves in
such a structural state is not completely clear.

To date, published data on ultrasonic excitation
modes as applied to amorphous alloys are not complete,
few in number and scattered. It is necessary to accumu-
late and expand this experimental knowledge for various
chemical compositions of both bulk and, to a greater
extent, AAs ribbons. Nevertheless, we have attempted to
collect the information of interest on the main parame-
ters, distributing it in accordance with the ultimate goal
of ultrasonic processing, which the researchers set in
their experiments: rejuvenation and forming of amor-
phous alloys, nanocrystallization from an amorphous
state or joining the material by ultrasonic weld-
ing/soldering (Table 1). Analysing the obtained data, we
can conclude the following.

1. Bulk amorphous alloys are studied more inten-
sively than ribbon ones, and it is expected that there is
more information on the main parameters of their ultra-
sonic excitation.

2. There are two generalised methods of ultrasonic
modification of amorphous alloys: a noncontact method,
when high-frequency vibrations are transmitted through
a liquid medium in an ultrasonic bath, and a contact
method, i.e. using an ultrasonic sonotrode directly adjacent
to the AA. In most cases, researchers use the second
method, since it has proven itself to be faster and more ef-
fective in its influence on the AA structure.

3.To implement softening and structural renewal of
amorphous alloys, the frequency of ultrasonic treatment f'is
20 kHz, the time of exposure ¢ is very short — from 80 to
950 ms, the amplitude A varies from 19 to 44.4 um.
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Table 1. Modes of ultrasonic treatment for ribbon and bulk amorphous alloys
Taonuya 1. Pesxcumvl Y3 00pabomxu 015 1eHMOUHBIX U 00bEMHBIX AMOPPHBIX CNIABOE

Chemical composition of amorphous Ultrasonic treatment parameters
alloys, at. % Source
[ f, kHz A, pm t,s E,J W, W
Structural rejuvenation and forming
La60Ni15A125 20 40 - — - [45]
La55A125Ni5Cu10C05
A186Ni9Las
La60A120Ni20 [5 1]
CusoZrsg 20 40-44.4 1 — _ [52]
Pd49CU30P20Ni10 [48]
Zr35Ti30Cug 2sB€2s.75
Fe7gSi9B13 ribbons
La55A125Ni5Cu10C05 20 - 0.08-0.24 5-30 - [91]
Zr52‘5Cu17A9Ni14‘6A110Ti5 20 19-36 — — — [44]
Zr46CuysAlg 20 40 0.6-0.95 50-400 83-205 [67]
Partial nanocrystallization
Cusy 71 Tizg 0621 1A59Ni754f ZnB 20 15-50 -~ . -~ [64]
amorphous composite
ZI'44Ti| ICUIONiloBC% 20 24 — — — [33]
Zr46‘75CU46‘75A16‘5 20 15 7200 - - [66]
TisoNiysCuys ribbons 22 10 720-1800 - - [34]
LagsAl14Cuy, 20 4-14 - 100-700 - [68]
Fe7gsi13B9 ribbons - - . [69]
Fe73‘GSi15A8B7A2Cu1A0Nb2A4 ribbons 21 25 10-60 — 600 [39]
Joining via ultrasonic welding/soldering
La55A125Ni5Cu10C05 / Zr55Cu30A110Ni5 /
TiZrHfBeNi 20 44 .4 - 300-700 2500 [89]
AA5754 aluminum alloy /
20 41 - 2000 - 82
Zrs9 3Cung Al g 4Nby 5 [82]
Al / Fe7;Si14By ribbons 27 15 10 - - [77]
Sn—Cu—Ni/ Zr55A110Cu30Ni5 40 5.1-7.4 90 — - [78]
Sn/ Zr50.7CngNi9A11243 20 - 5-3600 - - [79]
Fe5SiyB; 5 ribbons to each other 20 35 0.22 - 4000 [85]
Al/Cu/ Nig2_2CT7B3Si4_gFe3 ribbons 35 - - — 800 [86]

Note. A4 is the amplitude of ultrasonic vibrations;
[fis the frequency of ultrasonic vibrations,
t is the ultrasonic exposure time;
W is the power;,
E is the energy of ultrasonic equipment.
Ipumeuanue. A — amnaumyoa V3 konebanuii;
f—uwacmoma Y3 xonebanuii;
t — gpems V3 o30eiicmeust;
W — mownocme V3 ycmanosxu;
E — ee anepeus.
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At lower amplitudes, AAs usually pass into a state with
lower potential energy, similar to the aging effect.

4. To transfer amorphous alloy into a partially nanocrys-
talline state, a longer ultrasonic treatment is required than
for rejuvenation (from 10 s to 2 h). In this case, the fre-
quency range is expanded (~=20-37 kHz) along with
the amplitude range (4=4-50 pm).

5. During ultrasonic welding/soldering of amorphous al-
loys, the following ranges of ultrasonic characteristics can
be noted: /=20-40 kHz, 4=5.1-44.4 pm. As for the time of
ultrasonic action, for joining micron AAs ribbons with each
other or with another material, it is necessary from 220 ms
to 10 s, and for bulk AAs with a thickness of several centi-
metres, it will take up to 1 h.

6. The highest values of energy E and power W of ultra-
sonic devices are noted during ultrasonic welding (E=300—
2000 J, w=800—-4000 W), average values — during partial
nanocrystallization (£=100-700J, W=100-600 W), and
the lowest — during structural rejuvenation and forming of
AAs (E=5-400 J, W=83-205 W).

An interesting and attractive idea is to build extreme ef-
fects, including ultrasonic modification, into one integral
technological chain [1]. This can lead to qualitative changes
in the nature of the final structure and, consequently, to
the possibility of obtaining unique properties of metallic
materials subjected to complex effects. With regard to
amorphous alloys, individual links of the chain are already
successfully implemented: for example, melt quenching
(MQ), during which AAs are created, and their subsequent
severe plastic deformation (SPD) in a Bridgman chamber,
or MQ + laser irradiation (LI), or MQ + ultrasonic treat-
ment (UST), or MQ + cryogenic deformation (CD). For
the successful implementation of systemic multi-stage
treatment, for example MQ — SPD — CD — LI — UST,
it is necessary to “synchronise” the parameters for the mate-
rial to obtain new structures and structure-sensitive proper-
ties. This research layout is innovative, but has not yet been
sufficiently reflected in the scientific literature.

CONCLUSIONS

Processing of amorphous alloys into desired shapes and
structures is a prerequisite and basis for their successful
commercial application. A promising method of influencing
AAs (non-destructive, environmentally friendly and inex-
pensive) both from a fundamental and from practical point
of view is the use of high-frequency ultrasonic vibrations.
However, to date, many aspects concerning the physical
nature of structure formation in amorphous alloys,
the mechanisms of their plastic deformation, crystallization,
and the response of physicochemical properties during ul-
trasonic processing remain unclear.

It is important to continue identifying in detail the re-
lationships between the sequence of structural-phase
transformations in amorphous alloys and the parameters
of ultrasonic processing. This will expand the existing
scientific knowledge in the physics of disordered and
nonequilibrium systems, and will allow for a compre-
hensive formulation of conditions and accurate determi-
nation of modes that promote:

—the structure rejuvenation with softening and improve-
ment of thermal stability while maintaining amorphousness;

— partial devitrification of AAs with an optimal combi-
nation of the proportion of amorphous and nanocrystalline
phases, a compromise balance of strength and plasticity, as
well as the preservation of soft magnetic properties;

— cold welding of layers of amorphous alloys different
in compositions and properties with high-quality adhesion,
i. e. the creation of hybrid materials.

Understanding the scientific principles of these processes
using ultrasound is extremely important for the effective
management of properties of amorphous alloys and the crea-
tion of innovative multifunctional materials based on them.

Studying the influence of ultrasonic treatment on
the thermal stability of AAs will allow expanding the tem-
perature ranges of their operation without embrittlement.

Shear punching of amorphous alloys under the influence
of high-frequency vibrations is an innovative method of
their forming. The method is not limited to the punch pro-
file, and it is possible to manufacture more target products
with different shapes. Such advantages as low cost, fast
operation speed and good product quality make the process
of forming AAs an energy-saving and effective technology
with wide application prospects.

The study of the influence of ultrasonic mechanical ac-
tivation on the structure will help to understand the mecha-
nisms of structural rearrangements, activation of defects in
amorphous alloys under the action of ultrasonic vibrations.
This, in particular, helps to identify the physical causes of
superplastic flow in a glassy system using cold ultrasonic
treatment. Ultrasonic forming using the phenomenon of
superplasticity of amorphous alloys in a supercooled liquid
state can become an advanced method for manufacturing
circuits, relief images, parts from AAs with sizes from
nanometres to centimetres. This opens up inviting prospects
in engineering applications, for example, in microelectro-
nics and nanotechnology, for the creation of components,
integrated circuits, chips, printed circuit boards.

The results of cold welding of dissimilar amorphous al-
loys stimulate further development of high-tech manual de-
sign and manufacture of intelligent materials containing se-
veral phases and compositions. Ultrasonic forming of AAs
will provide a new method for manufacturing structures and
large-sized AAs with great potential for future developments.
Ultrasonic processing can be used when creating high-speed
devices, planar mechanisms, for example, to create actuators
in microelectromechanical systems based on crystallization
using ultrasonic vibrations of TiNi amorphous thin films with
shape memory. The advantage of this method is that the
shape memory properties can be spatially distributed taking
into account the specified requirements.
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Annomayusn: 1llupoxoe npuMeHeHNe aMOP(HBIX CIIIIABOB OCJIOKHEHO Y3KHUM AMAIa30HOM HX TEPMHUYECKOH cTabmiIb-
HOCTH, OXpYIYMBaHMWEM IIPH IOBBIMICHHBIX TEMIlEpaTypax, TPYAHOOOPaOaThIBAEMOCTHIO, HU3KOW IUIACTHYHOCTHIO TIPH
pacTsDKeHHH. YIIbTpa3ByKoBasi 00paboTKa ABISIETCSI MHHOBALMOHHBIM METOZIOM JUIS PEUIeHHUs 3THX mpobiem. BerpanBa-
HHE B TEXHOJOTHYECKYIO IIEMOYKY YJIbTPa3ByKOBOW TEXHOJIOTMH MOXET CIIOCOOCTBOBATH COBEPIICHCTBOBAHHIO 3KCILTya-
TAIlMOHHBIX XapaKTEPUCTHK aMOP(HBIX CIUIABOB, M3TOTOBJICHUIO U3 HHUX JETalied Ha pa3HbIX MAacIITaOHBIX YPOBHSX,
a TaKkXKe Ka4eCTBEHHOMY COeTMHEHHIO C IpYTUMH MaTepuaiaMy. BiusiHue ynpTpa3ByKOBBIX BUOpaLuii Ha CTPYKTypHBIE ITpe-
BpAILEHUs] 1 MEXaHMYECKOe MOBeIeHHe aMOP(HBIX CIUIaBOB U3YUEHO HE B MOJHON Mepe. OTCYyTCTBHE LEJIOCTHOTO HAyYHOTO
000CHOBaHHMST (PM3NYECKUX MPOLECCOB M COMYTCTBYIOMMX 3(PPEKTOB B aMOP(MHBIX CIUIaBax MPHU YIbTPa3ByKOBOM BO30YkKIie-
HUHM TIPETITCTBYET PAa3BUTHIO COOTBETCTBYIOIIEH TEXHOJIOTUH U ONTHMHU3AINU €€ PEKUMOB. 3a MOCIeHee ACCATUICTHE HC-
CJIe/IOBATEIH MPEATIOKIIIA PA3INIHbIE METOIUKN YIBTPa3ByKOBOI 00pabOTKH aMOP(HBIX CIUIABOB JUISl YITy4dIIeHUs nX Gop-
MYEMOCTH, JOCTHIKEHUsI OanaHca INITACTUYHOCTH M POYHOCTH, KOHCOJIMINPOBAHUS APYT C APYroM U ¢ Metaiiamu. Kpome
TOTO, Pa3BUTHI ONpe/IETICHHBIE MPE/ICTAaBICHUS 00 OMOJIOXKEHUH MX CTPYKTYpPBI, O BO3MOXKHOCTSIX IIepeBOa B YACTHYHO Ha-
HOKPHCTAJUIMYECKOE COCTOSHHUE II0J JeHCTBHEM YIbTpa3Byka. UToOBI ITOIBECTH MTOT 3THM pa3paboTKaMm, MPUBOIMTCS
CHCTEeMaTHYeCKOe 00CyKAE€HHE OCOOEHHOCTEH, MapaMeTpoB M PEXHMOB YJIBTPa3BYKOBOH 0OpabOTKM NMPHUMEHHUTEIHHO
K JICHTOYHBIM M 0OBbEMHBIM aMOP(HBIM CILIaBaM JUIsl YJIy4IIEHUs] UX CTPYKTYpPOUYBCTBUTEIILHBIX CBOMCTB. Ha 3T0i ocHOBE
paccMaTpHBaIOTCS OTpaHMYEHMS TeKyIIHX HccienoBaHnii. K Hanbosee mepcrneKTHBHBIM MPUMEHEHHUSIM YJIBTPa3BYKOBBIX
TEXHOJIOTHH 17151 OBICTpO3aKalCHHBIX CIUIABOB B OrpKaiiieM OyaymieM clieyeT OTHECTH: UX aJJUTHBHOE NPOU3BOJICTBO,
CO3/laHMe THOPHUIIHBIX KOMIIO3UTOB 3a CUET YJIbTPAa3BYKOBOW CBAapKH, YJIbTPa3ByKOBOe (OpPMOBaHHE Ui M3rOTOBJICHHS
U3JENUH CIO0XKHBIX QOPM U TeOMETPUH, KOMIIEKCHYI0 MHOTO3TalHy0 00paboTKy A MOJydeHHs YHHUKAIBHOTO COYeTa-
HUS CBOMCTB (HampuMep, 3aKajka U3 paciulaBa — Jla3epHoe oOIydeHHe — YyIbTpa3ByKoBOe CTUMYynHUpoBaHue). Hactos-
muit 0030p pacHIMpsieT CYIIECTBYIONIME 3HAHHUS 00 yIbTPa3BYKOBOM YIPaBJICHHH CBOHCTBAMH, CTPYKTYpOH aMOpQHBIX
CIIABOB M 00JIETYAET MCCIIE0BATENSIM OBICTPBIH IMMOUCK CCHIJIOK 110 JAHHOW TEMAaTHKe.

Kniouegvie cnoea: amopdHbIi CIIIaB; yinbTpa3ByKoBast 00pab0TKa; CTPYKTYpHBIE NPEBPAIIECHHS; MEXaHNYECKOe TTOBe-
JICHNE; HAHOKPUCTAIIT; OMOJIOXKEHHE CTPYKTYPBI; KOMIIO3UT; TIACTHYHOCTh; ()OPMOBaHHE.
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