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Abstract: Integrating machine learning in additive manufacturing to simulate real manufacturing outcomes can signifi-
cantly reduce the cost of manufacturing through selective manufacturing. However, limited research exists on developing
a prediction model for the mechanical properties of the material. The input variables include key selective laser melting
process parameters such as laser power, layer thickness, scan speed, and hatch spacing, with tensile strength as the output.
The artificial neural network (ANN) based mathematical model is compared with a second-degree polynomial regression
model. The robustness of both models was further assessed with the new data points beyond those used in the development
of ANN-based mathematical model and regression model. The results demonstrate that the proposed ANN-based mathe-
matical model offers superior accuracy, with a mean absolute percentage error (MAPE) value of 4.74 % and the R? (good-
ness of fit) value of 0.898 in predicting the strength of AlSil0Mg. The ANN-based mathematical method also demon-
strates the strong performance on the new data, achieving a regression value of 0.68. This concludes that the model shows

sufficient proof to consider a viable option for predicting the tensile strength.
Keywords: AlSi10Mg alloy; additive manufacturing; artificial neural network (ANN); machine learning; selective laser
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INTRODUCTION

Additive manufacturing has been the cornerstone of in-
dustrial innovation for several decades and has seemingly
adapted to handle diverse materials including metal, alloy,
polymer, composite, etc. It offers various processes such as
binder jetting, fused deposition, powder bed fusion, sheet
lamination, material jetting, etc. to meet diverse manufac-
turing requirements. The fabrication of the metals or com-
posite is majorly done by selective laser melting and laser
metal deposition. Additive manufacturing is a preferred
manufacturing process for the aluminium alloy and alumi-
nium metal matrix composite for its ability to deliver great
accuracy, lesser lead time, cost effectiveness, and superior
part qualities compared to conventional manufacturing
methods [1]. Pure aluminium however poses challenges
during laser melting because of its high reflectivity absorb-
ing only 7 % of the incident laser energy. In contrast, sili-
con has a high laser absorptivity of around 70 %, which
makes aluminium-silicon alloys an ideal candidate for se-
lective laser melting (SLM) due to their enhanced laser
absorption [2]. Among the aluminium-silicon alloys,
AlSi10Mg stands out as extremely promising because of its
excellent mechanical properties and lightweight characteris-
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tics. The alloy is very popular in the automobile and aero-
space sectors for its exceptional mechanical attributes and
remarkable thermal conductivity.

However, the printing parameters of the SLM process
such as laser power, layer thickness, scan speed, hatch
spacing etc. have a significant impact on the properties
of the material, which can be modulated to get the opti-
mum product. For instance, the densification property of
the metal can be controlled by varying the laser energy
density, which is the combined form of all four process
parameters (laser power, layer thickness, scan speed and
the hatch spacing). The adjustment helps to achieve
the desired mechanical properties of the metal such as
tensile strength, compressive strength, hardness, and
microhardness, etc. [3].

Machine learning, which is the subset of artificial in-
telligence plays a vital role in generating a model/system
by enabling automatic learning from the provided data
and improving the accuracy without any extensive pro-
gramming [4].

Within this realm, an artificial neural network (ANN),
a part of deep learning, mimics the working principle of
a human brain. It has interconnected nodes within its
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architecture that simulate the biological neurons. The ANN
architecture comprises of input layers (comprising inde-
pendent variables), hidden layers (comprising one or more)
and output layers (comprising dependent variables). Each
node of a layer is connected to the next set of nodes through
weights, biases and a transfer function to send the signal.
ANN uses the training data to establish the connection be-
tween input and output. It learns and fine-tunes the accura-
cy of the model through iterative learning which makes it
a very powerful tool in the domain of artificial intelligence
[5]. The basic ANN architecture used in this study is de-
picted in the Fig. 1.

This model can be used for the prediction of unknowns
and for finding optimal solutions by analysing the influence
of input parameters. However, there are very few studies
have been performed in this area.

Shubham et al. [6] assessed six different machine
learning models such as deep learning, bagging, decision
tree, linear regression, random forest and ridge regression
to evaluate the influence of manufacturing parameters
such as laser power, scan speed, scan space, and island
size on the tensile strength of Al1Si10Mg alloy. It was con-
cluded that deep learning and decision trees can have pre-
diction accuracy of up to 99 and 89 % respectively. It was
also highlighted that laser power is the most influencing
parameter among all the four parameters considered.
Ghetiya et al. [7] explored the machine learning approach
to optimise the process parameters of friction stir welding
of aluminium plates. The input welding parameters con-
sidered are tool rotational speed, welding speed, tool
shoulder diameter and axial force. An ANN model was
developed utilising a backpropagation algorithm to predict
the tensile strength for the given process parameters.
The results show a good alignment of the model with
the experimental values and can be used as an alternate
way to calculate the tensile strength.

M. Khalefa [8] developed the ANN model from the
experimental data of stir-casting manufactured Al-Si

alloy. The application of the model is to predict
the effect of silicon content on tensile strength, hard-
ness, and wear loss. The obtained results exhibit that
the predicted values satisfactorily align with the experi-
mental values with mean square error (MSE) of 0.0335,
0.0023, and 0.014 for the tensile test, the hardness test,
and the wear loss respectively. Alamri et al. [9] ex-
plored the prediction of the part quality that includes
assessing relative density, surface roughness, and hard-
ness in relation to laser power, hatch spacing, scan ve-
locity and layer thickness of selective laser melting
manufactured AISi10Mg alloy. This study has used five
different supervised learning algorithms such as artifi-
cial neural network (ANN), support vector regression
(SVR), kernel ridge regression (KRR), random forest
(RF), and Lasso regression to compare the results.
The ANN was found to be outperformed among other
models based on computation results. Additionally,
laser power and scan speed emerged as the predominant
parameters influencing relative density and hardness,
while layer thickness and scan speed impact the surface
roughness the most.

Given limited research, this study develops a novel
approach to integrate an ANN-based mathematical mo-
del and regression model to predict the tensile strength
of additively manufactured (SLM) AlSil0Mg alloys
based on available data.

The emphasis of the study is on the development of
a correlation between tensile strength and selective laser
melting parameters such as laser power, layer thickness,
scan speed, and hatch spacing. Furthermore, this research
contributes valuable insight into using a machine learning
model to predict material properties without the need of
actual experimentation.

The objective of this work is to enhance the ability to
predict and optimise the material properties from the expe-
rimental data and to provide better control over the produc-
tion process, through a reliable predictive model.

Hidden

Fig. 1. Architecture of an artificial neural network
Puc. 1. Apxumexmypa uckyccmeennoll HetlpoHHOl cemu
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The work aims to support a more cost and time effective
approach for the material assessment. In doing so, this
study lays a foundation for future research by integrating
machine learning and neural network models into additive
manufacturing.

METHODS

Data collection for the artificial neural network
and regression model

The input dataset for the ANN and regression models
are gathered from the existing literature for the as-built
AlSi10Mg sample fabricated via a selective laser melting
process. Additionally, a new experiment was conducted
in this study as part of data collection for the ANN mo-
del. The ANN model and regression model were deve-
loped using 108 data points (Appendix 1) and a further
27 data points (Appendix 2) were used to assess the pre-
cision of the model selected randomly. The model’s pre-
dicted output was compared with the experimental value
reported in the literature. Both the artificial neural net-
work and regression models were implemented using
MATLAB R2023b. The model utilises the laser power
denoted by (P), layer thickness denoted (7), scan speed
denoted by (V), and hatch spacing denoted by (H) as
the input variables. The input data range for the ANN
model was taken as 150-1000 W for laser power, 20—
80 pm for layer thickness, 195-2400 mm/s for the scan
speed, and 42-240 um for hatch spacing.

Experiment

The gas-atomised AlISil0Mg powder of average particle
size range 20—63 pm was used in the manufacturing which
primarily consists of up to 10 % silicon, a trace amount of
magnesium and iron. The detailed composition of the pow-
der is shown in Table 1.

The samples were fabricated using the SLM process in
RenAM 500E machine (UK). The key manufacturing pa-
rameters of the manufacturing include laser power is
275 W, layer thickness is 30 um, scanning speed is
2000 mm/s and hatch distance is 80 um. The build chamber
was filled with 99.999 % pure argon gas to protect from the
oxidation of the powder. The building direction has been
kept horizontal and the layers were oriented to an angle of
67° from the preceding layer. The temperature of the build
plate was maintained at 80 °C initially to avoid failure due
to the change in temperature between the bottom layer and
the building plate.

The flat-type sub-size tensile test specimens of
gauge length 25 mm were manufactured following
the ASTM E8 standard as shown in Fig. 2. The as-built
components were kept at stress relieved at 300+10 °C
for 2 h and air cooled.

Tensile tests were conducted on the universal testing
machine, model ETM (Wance, China) of 50 kN capacity
at a strain rate of 1 mm/min. The axial displacement was
monitored by a computer integrated video extensometer
connected to a tensile testing machine which captures
real-time elongation data to construct the stress—strain
diagram.

The yield strength was determined using the 0.2 % off-
set method using the stress—strain Excel graph. First,
the linear (elastic) region of the stress-strain graph was
identified to determine the slope (elastic modulus). A line
was then drawn parallel to this linear part of the graph,
passing through 0.2 % of the strain (Y-axis). The yield
strength is defined as the point where the offset line inter-
sects the stress—strain curve.

Development of an artificial neural network

MATLAB R2023b version was used to implement
the ANN model using the neural network fitting tool within
the deep learning toolbox. A supervised machine learning
approach was employed to predict the strength of the mate-
rial. The training was run for the target epoch value of 1000
with four input variables (laser power, layer thickness, scan
speed/velocity, and hatch spacing/distance) and two outputs
(yield and tensile strength).

It is worth noting that the neural network uses two two-
layer feedforward designs. The input layer and output layer
use hyperbolic tangent (tansig) and liner (purelin) transfer
function respectively as shown in Fig. 3.

The neural network structure consists of 10 neurons in
the hidden layers and 2 neurons corresponding to the output
variables. This configuration is selected based on the com-
plexity and performance requirements of the ANN model.
The hidden layer is designed to effectively extract features
from the input layers. A common approach to determine
the number of neurons in the hidden layer is to double
the number of neurons in the input layer and add the num-
ber of neurons in the output layer'.

The adopted data is categorised into three different
categories randomly training, validation, and testing in
80:10:10 ratio. The Levenberg—Marquardt algorithm
(trainlm) is used for the training of the ANN model,
which is often considered the fastest back-propagation
algorithm. The input and output data are normalised be-
tween —1 and +1 to achieve dimensional consistency and
to achieve compatibility with tansig transfer function
using equation (1) [10]:

Mnormzz;\;(Ni _]Cv[min)_l, (1)
max min

where M, is normalised parameters;

N; is actual data;

Npin and Ny are the minimum and maximum values of

the actual data respectively.

Polynomial regression analysis

A multivariate polynomial regression model was created
using MATLAB to create the correlation between the de-
pendent variable (ultimate tensile strength) and independent
variables (laser power, layer thickness, scan speed/velocity,
and hatch spacing/distance). The same experimental results
that were used to develop the ANN model are utilised for

! Livshin I. Artificial Neural Networks with Java: Tools
for Building Neural Network Applications. Chicago, 2019. 575 p.
DOI: 10.1007/978-1-4842-4421-0.
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Table 1. Composition of AISi10Mg powder
Taonuya 1. Cocmag nopowxa AlSil0Mg

Element Al Si Mg Fe N o Ti Zn Mn Ni Cu Pb Sn
Mass. % Balance 9-11 0.25-0.45 <0.25 <020 | <0.20 | <0.15 | <0.10 | <0.10 | <0.05 | <0.05 | <0.02 | <0.02
100 mm

e— 30 mm —)l R6 mm

T \Z — —

10 mm \ 6 mm
I T § PR RN
j&—— 32 mm —>
Fig. 2. Sample details: a — sample dimension; b — fabricated sample
Puc. 2. [lapamempul obpazya: a — pazmepol; b — obpaszey
Hidden Output
Input b b Output
4 w w 2

J .

10

Fig. 3. Network architecture
Puc. 3. Apxumexmypa cemu
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the multivariate regression model. The multi-variant poly-
nomial regression, fit/m facilitates the modelling of the rela-
tion between multiple input predictors and a single re-
sponse. The model computes coefficients for each set of
variables and the intercept terms. It determines the impact
of each predictor on the response variable. The second-
degree polynomial function is calculated using statistics and
machine learning toolbox:

N
Y(X)=ag+) " aX;+
N N i
+> G Xi X+ > X}

where Y is the predicted response;
ay is the intercept coefficient;

2

a;X; are the linear terms;

a;X;X; are the interaction terms;

a; X, 2 are the square terms.

RESULTS

Experimental values

The tensile test of the SLM fabricated specimen is per-
formed as per ASTM ES8 standard and results are present-
ed in the Table 2. In the tensile test, the specimen is bro-
ken in the direction perpendicular to the applied force as
shown in Fig. 4. The tensile strength of the specimen is
reported as 436.95 MPa at the maximum force of 15.7 KN
and the specimen exhibits an elongation of 9.59 %.
The failure of the specimen is identified as brittle and
sudden occurring before the material entered the plastic

zone as shown in stress—strain diagram (Fig. 5). The yield
strength was found to be 58 MPa, calculated using
the 0.2 % proof/offset method.

Artificial neural network results

The performance of the developed ANN is assessed us-
ing various evaluations and analytical metrics. The com-
prehensive output of the ANN is shown in Table 3.

ANN regression plot for overall training, validation, and
test data for yield and tensile strength is shown in Fig. 6.
The X-axis represents the value of the target (experimental
data) and the Y-axis shows the output data predicted using
the ANN model. The dotted line illustrates the ideal corre-
lation where actual and predicted values are equal, while
the solid line represents the actual/true correlation between
the X and Y axis.

It is observed that the correlation coefficient (R-value)
for the overall output of the training, validation, and test
data is 0.96, 0.94, and 0.91 respectively. The overall
R-value is 0.96 which shows a strong correlation between
actual (target) and predicted output.

The value at which MSE between actual and predict-
ed values converges is shown by the best validation of
the performance curve. The back-propagation algorithm
calibrates the values of weights and biases with each
iteration and generates the lowest MSE value. The num-
ber of epochs represents the number of iterations per-
formed by the network to converge it to a minimum [11].
The performance curve of this study is shown in Fig. 7,
which shows the best performance of the model of value
0.024 at epoch 44. From the performance curve, it was
evident that there is no over-fitting observed. Additional-
ly, similar trends have been observed for training, test-
ing, and validation data.

Table 2. Tensile test results
Tabnuya 2. Pe3ynomamol ucnolmanuii Ha pacmsdiceHue

Mechanical properties Values
Yield stress, MPa 58
Tensile strength, MPa 436.95

Elongation, % 9.59
Maximum force, KN 15.73

Fig. 4. Fractured sample
Puc. 4. Paspywennviii 06pazey
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Fig. 5. Stress—strain diagram
Puc. 5. [luazpamma «nanpsicenue — depopmayusiy
Table 3. Artificial neural network output
Taonuua 3. Bvixoomnvle 0anHble UCKYCCMEEHHOU HeUPOHHOU cemu
ANN output Value
Epoch value 50
R-value — training 0.96
R-value — validation 0.94
R-value — test 0.91
R-value — all 0.96
MSE 0.0155

Development of mathematical formula based on ANN

Once the ANN model is trained it can be translated
into a mathematical equation or model by integrating
transfer function using weights and biases as depicted
in equation [10]:

i m
Y =by+ Zk—l(wk x sig(b it D Ko D - @

where Y is the normalised output variables;

by is the bias at the output layer;

wy 1s the weight that connects between the £t hidden layer
and the single output neuron;

b 1s the bias at the kth neuron of the hidden layer;

h and m are the number of neurons in the hidden layer and
input layers, respectively;

wit is the connection weight between the ith input variable
and the hidden layer;

X; is the normalised input variable;

Jsig 18 the transfer function used to train the ANN.

The number of neurons connected to the input and hid-
den layer is #=10. The adopted transfer function between
the input and output layers is tansig (fu; = tansig) and
purelin respectively.

Therefore, the equation (3) can be converted into equa-
tion [12]:

TS, =—0.0825+[W]x[q] , 4)
where 7S, is the normalised tensile strength;
[W]=[1.279-01180 0.6628 —2.9155 2.6693

~2.8315-03615 32800 0.7236 - 1.8831];
[q] = [tanh A, tanh 4, tanh 4; tanh A, tanh 4
tanh 4, tanh 4, tanh 4 tanh 4y tanh 4 ,];

X —X
e’ —e
tanh = f(x)=———.
e¥+e*
The normalised variables 4; to 419 can be calculated us-
ing matrix equations:
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[ 4] [ 04549 -0.2335 1.5844 —1.7360] [-2.5042]
A, 0.6977  0.1801  4.0404  3.2143 1.6432
4, 0.5458 57727 43710 —6.2395 4.3932
Ay | |-1.9850 —0.4610 12824 —0.8306|[ P] |-0.6902
As | | —-45821 02266 13249 —1.1109|| T L 13
Aq —-2.520 54207 1.8587  0.2827 ||V | |-0.7925
A4, | |-04423 0.1586 —0.5219 3.0538 ||H| | 0.3307
A | [-09543 27184  0.4837  0.6755 -0.6097
4, 1.6739 -2.8579 03978  2.3733 -0.9304

| 4| | 12295 32789 -2.5835 1.1224 | | —2.5837 |

The normalised tensile strength in equation (4) needs to where 7S, is the de-normalised tensile strength, the mini-
be de-normalised to derive the required predictive mathe- mum and maximum values of input tensile strength are 160
matical equation. The de-normalised equation to predict the and 478.8 MPa respectively.

tensile strength is shown in equation (5): Hence equation (5) represents the ANN-based mathe-
matical model to predict the tensile strength for the provid-
7S +1)x318.8 ed value of laser power, layer thickness, scan speed, and

TS, _ (TS, +1)x3188 o ) P Y P

hatch spacing.

Training: R=0.9573 Validation: R=0.94466
o 1 S = - | 1
E 0 Dats o b O Dats ;j‘
= — it . g Fil -:,_-ln
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5 K i
o @
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Fig. 6. Regression plot
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Best Validation Performance is 0.023688 at epoch 44

Train
Validation
Test

Mean Squared Error (mse)

10—3 L

0 5 10 15 20

25 30 35 40 45 50

50 Epochs

Fig. 7. Performance plot
Puc. 7. I'pagpux s¢hpexmusrocmu

Polynomial regression analysis using MATLAB

The experimental results are fitted in the quadratic equa-
tion (2) resulting in the proposed regression model as
shown in equation:

T.S=-33.83+3.1866x P—0.0435xT +0.2681 xV —
—29162x H —-0.0313xPxT —0.0004x PxV —
—0.0182xPxH—-0.0068xT xV +

+0.1159% T x H +0.0025xV x H +0.0005x P +
+0.0186xT? —=0.0001x V> +0.0045 x H>

. (6)

where 7.5 is the tensile strength;
P is the laser power;

T is the layer thickness;

V is the scan speed;

H is the hatch spacing.

DISCUSSION

Validation of mathematical formula based on ANN

The comparison between ANN predicted output and
mathematical model predicted output is plotted in Fig. 8.
Evidently, the proposed mathematical model replicates
the ANN output perfectly with a goodness of fit of
(R*>)=1 and can be used to predict the tensile strength
without running the ANN model. Fig. 9 shows the trend
comparison between actual experimental values and pre-
dicted output. The mean absolute percentage error
(MAPE) between the experimental and predicted value
stands at 4.74 % which demonstrates quite a good accu-
racy. The goodness of fit (R?) between the ANN predict-

ed data and actual experimental value is 0.898
(Fig. 10 a). This indicates that the predicted value
matches the actual value by 89.8 %.

Validation of regression model

The calculated goodness of fit between the experimental
value and predicted value using the polynomial regression
model is 0.68, which means the predicted value aligns with
the experimental value with an accuracy of 68 %, as shown
in Fig. 10 b.

Additionally, the mean absolute percentage error
(MAPE) calculated between experimental and predicted
values are 8.83 %, which shows a moderate level of de-
viation with respect to experimental values. Fig. 11
shows the trend comparison between actual and pre-
dicted values.

F-test and standard error of the regression
coefficients

The F-test of the regression model is performed to as-
sess the predictive power and the significance of the rela-
tionship between dependent and independent variables
using equations from:

sST=>(v,~¥)
sse=(7. -7
o517,

100
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Fig. 8. Tensile strength predicted using ANN vs mathematical model
Puc. 8. [Ipeden npounocmu, paccuumannwiii ¢ nomowpio MHC u mamemamuueckoii mooenu

600
500

400 A

200

Tensile strength (MPa)

100 — Experimental
Predicted

Am \T | ,
/ NY # f \! A/
300 K, - "W “,‘ . ﬂbﬁL V\\ ’/\u/kwj\y"vn\w-

A

4

v

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106

Data points

Fig. 9. Experimental vs predicted values of tensile strength (ANN)
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MSR:S‘S'_R;
k
MSE:SS—E;
n—k-1

..M
F —statistic= s
MSE

where SST is total sum of squares;
SSR is regression sum of squares;
SSE is residual sum of squares;
MSR is mean square for regression;
MSE is mean square for error;

Y; is experimental values;

Y is mean of experimental values;

Y, is predicted values;

k is No of independent variable;
n—k—1 is degrees of freedom.

Since F calculated 13.36>Fcar at the 0.05 significance
level, there is statistically significant relationship between
the predictor and response variable.

The standard error of the regression coefficient
measures the variability of the estimated coefficients if the
study were repeated. It measures the uncertainty associated
with the regression model and how much it is expected to
vary due to sampling variability. The analysis is performed
using MATLAB using equations:

1 R T, ¥, H RT, BN

1\ » T, V, H, BT, PV,
X:

_1 PH Tl’l V}’l Hl’l })il Tn Pn VI’I
PH, TV, TH, V,H, P> T> Vv H?
1441 171 1441 1441 1 1 1 1
PIHZ T2V2 T2H2 VZHZ PZ2 TZ2 V22 1122
P}{ T.V T.H V}i };2 fz V.2 ﬁz
nttn n"n n*tn 2442 n n n n

Residual Variance, o> = SSR ;

n—p

Variance — Covariance Matrix of Coefficients,
Var (B)z *(xx)™.

The standard errors are the square roots of the diagonal
elements of variance-covariance matrix:

Standard error of Coefficients

SE(ﬁ)z Jdiag(Var (3 ).

The result of the study is summarised in Table 4. As
stated, the standard error of the coefficient provides
the measure of uncertainty of the coefficients. The rela-
tively small error indicates the precise estimate and sig-
nificance of the impact of the coefficient as seen for
the variables V, V2, P2, T*, H?, P-T, P-V, P-H, T-V, and
V-H. In contrast, the relatively large standard error for
the variable T and the intercept suggest that the estima-
tions are not very precise and likely to vary more across
the samples.

Validation of proposed models with the new data sets

ANN-based mathematical and polynomial regression
models are validated on the new set of 27 data points, the
datasets beyond those that are used in the model develop-
ment. The experimental values of the data points are col-
lected from the previous literature. ANN-based mathemati-
cal equation (5) and polynomial regression equation (6)
were used for the prediction of the tensile strength of the
new input datasets and the same was compared with the
experimental values to assess the robustness of the model.
The validation was done using statistical parameters such as
goodness of fit (R-square) to measure how well the model
fits the data, mean absolute percentage error (MAPE) to
provide the relative accuracy of the prediction, mean abso-
lute error (MAE) to measure overall prediction error and
root mean squared error (RMSE) to find out the impact of
the larger error as outlined in equations:

RZ—1— Sum of squares of residuals

Total sum of squares

Mean absolute percentage error (MAPE) =

_ l Z Prediction — Actual 100 5
n Actual

Mean absolute error (MAE) =

= l Z|Prediction - Actual| .
n

Root Mean Square Error (RMSE) =

\/Z(Prediction — Actual )2

n

Fig. 12 illustrates the comparison of experimental
values with an ANN-based mathematical model and poly-
nomial regression model. The mean error percentage was
found to be 11.1 and 16.8 % for ANN-based equation
and polynomial regression model respectively.
The summary of the validation of the two models is
shown in Table 5.

Comparison and validation with prior research

The experimental results of tensile properties assess-
ment of SLM fabricated AlSilOMg sample demonstrate
strong consistency with the previous studies [13-17].
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Table 4. Standard error of a regression coefficient

Tabnuya 4. Cpeonee ksaopamuueckoe omxionenue Kodgguyuenma pespeccuu

Variable Coefficient Standard errors of the regression
Intercept —33.83 156.8213
P 3.1866 0.5771
T —0.0435 4.3601
14 0.2681 0.0783
H -2.9162 0.741
pP-T —0.0313 0.006
PV —0.0004 0.0002
P-H —0.0182 0.0024
v —0.0068 0.0015
T"H 0.1159 0.0134
V-H 0.0025 0.0007
P? 0.0005 0.0003
i 0.0186 0.0397
V2 —0.0001 0
H 0.0045 0.0022

600
g
S 500
oo = a
S '/\\ // ~ T— /‘ \‘/ /\
£ 300 Y W
4 C
= 200 .
2 —e—Experimental Values
= 100 ANN based mathematical model
0 Polynomial Regression Model
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Data points
Fig. 12. Experimental vs predicted values of tensile strength for new data points
Puc. 12. Dxcnepumenmanbhuie u CHpOSHO3UPOSAHHbIE 3HAYEHUS NPedeid NPOYHOCIU OIS HOBLIX MOYEK OAHHbIX
104 Frontier Materials & Technologies. 2025. No. 1



Srivastava S.K., Mathivanan N.R. “Mathematical modelling to predict the tensile strength of additively manufactured AISi10Mg alloy...”

Table 5. Summary of the validation of ANN-based and regression models
Taoauua 5. Pesynomam oyenku modenu na ochose MHC u peepeccuonnoii mooenu

Evaluation metric ANN based mathematical model Polynomial regression model
R-square (R?) 0.68 0.25
Mean absolute error (MAE) 39.44 61.17
Mean absolute percentage error (MAPE) 11.10 16.89
Root mean square error (RMSE) 50.37 79.28

The tested specimen exhibited significantly higher tensile
strength approximately 25 % higher than that of conven-
tionally cast specimens [18].

The developed ANN model and regression model clear-
ly show the dependency of the output on the key process
parameters 1. e. laser power, layer thickness, hatch spacing,
and scan speed. The observation aligns with the previous
studies, which identified the laser power and scan speed as
the common predominant influencing factors on the materi-
al properties [6; 9].

The results clearly show that the ANN model outper-
formed the regression model, showing superior predictabi-
lity for the material properties. This aligns with previous
studies, that highlight the ability of the ANN model to
handle complex, multi-functional, non-linear relationships
[6; 9; 19]. For example, M. Khalefa [8] achieved an MSE
of 0.0335 for tensile strength prediction using ANN, while
other researchers [9] reported MSE values of 0.232, 0.395,
0.122 for relative density, surface roughness, and hardness
respectively. Similarly, Ghetiya et al. [7] achieved the MSE
value less than 3 % using an ANN model for tensile
strength prediction. In this study, the accuracy of the ANN
surpasses some earlier findings by predicting material pro-
perties with an MSE value of 0.0155 and an overall R value
0f 0.96. This improvement is attributed to the use of a wider
range of datasets for model training, which enhances its
reliability and provides a comprehensive representation of
the problem [20].

Contributions and implications of the study

The current study contributes to the additive manufac-
turing field by providing a precise machine learning based
approach for the prediction of material properties using
input process parameters. The work narrows down on the
prediction of tensile strength of SLM manufactured
AlSil0Mg alloy, offering a useful tool for manufacturing
and design engineers.

This finding also offers a practical and efficient solu-
tion by minimising manufacturing time and resource
usage. By enabling the real time optimisation of manu-
facturing costs, the research supports the production of
high-quality parts.

Furthermore, as the machine learning model is
trained to predict the properties under various condi-
tions, the study also provides further advancements in
this area by encouraging input parameters optimisation

to reduce material defects through the correlation be-
tween the inputs and outputs.

The study presents a boarder implication as it empowers
the adoption and integration of machine learning applica-
tions in additive manufacturing. The work further promotes
the artificial intelligence, data driven approach in advanced
material properties optimisation.

Limitation of proposed ANN model

The proposed ANN model comes with certain limita-
tions as follows:

1. The input variables should fall within the range of
minimum and maximum range of the variables used in the
development of the ANN model.

2. The input and output should be normalised using
equation (1) before feeding it into the ANN model.

3. ANN is a complex system compared to the regression
model, which requires more computational resources. ANN
typically requires more datasets to train the model effec-
tively. The availability of a limited experimental dataset can
limit the capability of the ANN and cause overfitting.

CONCLUSIONS

In this study an artificial neural network model is
adapted as a mathematical equation model and a regression
model is developed to predict the tensile strength of addi-
tively manufactured (SLM) AlISi10Mg alloy based on exist-
ing experimental data. The effectiveness of the ANN-based
mathematical model is then evaluated and compared to
the regression model on the datasets distinct from those
used in the model development. The following conclusion
can be drawn from the study:

1. The proposed ANN-based mathematical model ex-
hibits superior performance compared to the regression
model with the R? (goodness of fit) value of 0.898 against
0.685 of the regression value for the input data sets used for
the model development. The ANN-based mathematical
model also performed comparatively well for the new data-
sets yielding a regression value of R? as 0.68.

2. Notably, the ANN-based mathematical model
demonstrates low mean absolute percentage error of 4.74,
and 11.1 % for the datasets used for model development
and the new input data-sets respectively.

3. This concludes that the accuracy of the ANN-based
mathematical model is good enough to consider it as
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the viable option for the prediction. However, the effica-
cy of the ANN model is limited for the new input data-
sets, because of the limited data availability. The inclu-
sion of more datasets into the development and validation
of the ANN model is expected to bring more accuracy.
Exploring various neural network techniques and fine
tuning the hyperparameters can improve the model per-
formance further.
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Annomayun: BHenpeHne MalIMHHOTO OOyYeHHUs B aJIMTUBHOE MPOM3BOJACTBO JII MOJETUPOBAHUSI PEATbHBIX pe-
3yJIbTATOB MOXKET 3HAUUTENILHO CHU3UTB €r0 CTOMMOCTh 3a CUET CEeJIeKTHBHOTO ITPON3BOACTBA. B HacTosIee Bpems cylie-
CTBYET HEJOCTATOYHO HCCIICIOBAHUM, OCBAIICHHBIX pa3pad0TKe MOJEIH MPOTHO3HPOBAHHUS MEXaHUYECKUX CBOMCTB Ma-
Tepuana. BxoaHble epeMeHHbIE MPEIOKEHHON MOJAENH BKIIIOYAIN KITIOYEBBIE MapaMeTphl Ipolecca CEeJIeKTUBHOM Jia-
3epHOH IITaBKH, TaKHe KaK MOIIHOCTB Jia3epa, TONIIMHA CJIOSl, CKOPOCTh CKaHWPOBAHMS U IIAr IITPUXOBKH, HA BBIXOZE
MoJTy4as peAelt MpoYyHocTH. MaTeMaTiudeckas MoJiellb Ha OCHOBE UCKYCCTBEHHON HEHPOHHOW CETH CpaBHUBAIACH C MO-
JIeTIbI0 MTOJITMHOMHUAIBHOM perpecciu BTOpoi creneHd. HaneskHOCTh 00enx Mojenei JOMOJTHUTEIBHO OLEHUBANIACh C HO-
BBIMH Ha0OpaMH JAaHHBIX, OTJMYHBIX OT T€X, KOTOPBIC UCIOIBb30BAIKNCH MIPH pa3pabOTKe MaTeMaTHYSCKONH MOJIEIH Ha OC-
HOBE MCKYCCTBEHHOI HEHPOHHOI CETH M MOJIEH perpeccuu. Pe3ynbTaThl OKA3aly, YTO MPeJIOKEHHAs MaTeMaTHIecKast
MOJIETIb HAa OCHOBE MCKYCCTBEHHOIH HEHpPOHHOH ceTH obecredynBaeT NPEBOCXOJHYIO TOYHOCTH: MPH IPOrHO3HMPOBAHHUU
npounocty cmtaBa AlSil0Mg cpennee abconroTHoe nporeHTHOe oTkioHeHue (MAPE) cocrasuio 4,74 %, kputepuii co-
orBeTcTBHA R?=0,898. MareMaTudecKnii METOI Ha OCHOBE MCKYCCTBEHHOHW HEMPOHHOM CETH TAKKe IOKa3al BBICOKYIO
MPOM3BOIMTEIBHOCTh Ha HOBBIX JIAaHHBIX — 3HaueHue perpeccun pocturano 0,68. Takum oOpazom, pa3paboTaHHYIO MO-
JleNIb BO3MOXKHO PacCMaTpUBaTh KaK NIEPCIIEKTUBHBIA BapUAHT JUIsl IPOTHO3UPOBAHUS IIPEJEIIa IPOYHOCTU MaTepuana.

Kntouegvie cnosa: cinas AlSi10Mg; annuTrBHOE MPONU3BOACTBO; HCKyCcCTBeHHAs HerporHas cets (MHC); mammaHOE
o0ydeHue; ceNIeKTUBHA JIa3epHast TUIABKa; MaTeMaTH4YecKast MOJICTIb.

Jna yumupoeanusa: Upusacrasa C.K., MatuBanan H.P. Marematuyeckass MOAeNb MPOTHO3UPOBAHUS TIpeIesa mpoy-
HoctH cruiaBa AlSilOMg, H3rOTOBIEHHOTO aJJUTUBHBIM CIIOCOOOM, C WCIOJIH30BAHWEM HCKYCCTBEHHBIX HEHPOHHBIX Ce-
teit // Frontier Materials & Technologies. 2025. Ne 1. C. 93-110. DOI: 10.18323/2782-4039-2025-1-71-8.
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